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Abstract

Oblivious RAM (ORAM) is a cryptographic primitive that allows a client to access memory locations
from a server without revealing its access patterns. Oblivious Parallel RAM (OPRAM) is a PRAM
counterpart of Oblivious RAM, i.e., it allows m clients that trust each other to simultaneously access data
from a server without revealing their access patterns. The best known OPRAM scheme [1, 2] achieves
amortized client-server bandwidth of O(log2 N) per lookup, but they do not achieve perfectly linear
access time speedup with clients. In fact, for each access, the blowup for the slowest client (also known
as parallel runtime blowup) is O(f(m) logm log2 N), f(m) = ω(1). This implies that, for most accesses,
some clients remain idle while others are accessing data. In this work, we show an OPRAM scheme that
has parallel runtime blowup of O(log2 N) while maintaining O(log2 N) client-server bandwidth blowup
for each client.

1 Introduction

Oblivious RAM is a cryptographic primitive that allows a client to store and retrieve blocks of data on
an untrusted server in such a way that no information about the access pattern of the client’s accesses is
revealed to the server beyond the total number of accesses. This primitive was introduced by Goldreich and
Ostrovsky [8,9,15] in a model where a trusted processor is accessing data from main memory during execution
of some protected software. Since this initial work, there has been a lot of work on designing ORAM schemes
in the secure data-outsourcing scenario [4, 10–14, 16, 18–20, 23], secure processor scenario [5, 17, 20], and for
applications to secure computation [21,22].

ORAM schemes inherently make multiple physical accesses to portions of server memory for each log-
ical memory access. ORAM schemes mainly try to optimize the bandwidth, i.e., the (amortized) client-
server communication for each logical memory access, as a function of N , the total number of memory
locations. Assuming no computation on the server, the best known ORAM scheme achieves a bandwidth
of O(log2N/ log logN) when the block size of memory is Ω(logN) [12] and O(logN) if the block size is
Ω(log2N) [20,21].

A fundamental limitation of ORAM is that it allows only one client to accesses memory. Sometimes—for
example, in a multicore processor—it may be necessary to allow multiple independent clients to access the
same memory at the same time. Oblivious Parallel RAM (OPRAM) [1] addresses this, and allows m clients
to access data obliviously. A key challenge in realizing OPRAM is to ensure that when multiple clients
access the same data block, no additional information is revealed. Also, the communication between clients
may also be visible to the server, and hence this communication pattern needs to be oblivious as well. Boyle
et al. introduced an OPRAM scheme with client-server bandwidth blowup of O(log3N) [1], which was later
improved by Chen, Lin, and Tessaro [2] to an amortized blowup of O(log2N) per client.

A key metric for any parallel system is the parallel runtime of the computation, i.e., the number of rounds
of communication with the server until all clients have obtained the result. The OPRAM scheme by Chen
et al. has parallel runtime blowup of O(f(m) logm log2N), f(m) = ω(1), compared to an insecure PRAM
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Table 1: Complexity of OPRAM protocols. Here, f(m) = ω(1) and κ is the computational security
parameter for an additive homomorphic encryption scheme.

Client-server Client-server Parallel

bandwidth blowup bandwidth blowup runtime

(amortized) (worst case) blowup

Trivial O(log2N) O(log2N) O(m log2N)

Boyle et al. [1] O(log3N) O(log3N) O(log3N)

Chen et al. [2] O(log2N) ω(logN log λ) +O(log2N) O(f(m) logm log2N)

Our scheme (with AHE) O(logN(logN + κ)) O(logN(logN + κ)) O(logN(logN + κ))

Our scheme (w/o AHE) O(log2N) O(log2N) O(log2N)

that does not hide access patterns. In this work we improve upon this and show an OPRAM construction
that achieves parallel runtime blowup of O(log2N), while maintaining bandwidth blowup of O(log2N). We
first show this by allowing the server to perform additive homomorphic encryption (Section 3.2). We then
improve upon this construction to avoid any computation on the server (Section 3.5).

1.1 Overview of our Construction

In Path ORAM [20], memory is stored as a tree and each block is mapped to a random leaf in this tree.
Given a (block b, leaf l) mapping, the following invariant holds: the block b would be stored in some tree
node from root to the leaf l. In OPRAM, there are m clients and for each access, each of the m clients
request one logical block from memory. The OPRAM scheme by Chen et al. accesses data from memory
using Path ORAM scheme. The physical memory is partitioned into m parts, forming m Path ORAM
subtrees. Each client is allowed to read and write only to its assigned part. With this, they ensure that no
two clients read or write to the same physical location at the same time. Given blocks in Path ORAM are
mapped to a leaf uniformly at random, for each access, it can be shown by a simple balls and bins analysis
that O(f(m) logm), f(m) = ω(1) leaves may be mapped to one subtree. Thus, for each access, some client
performs k Path ORAM accesses. Hence, the span of computation (or the parallel runtime) is a factor k
larger than the ideal span in which each client performs one ORAM access.

Our protocol is geared towards making each client perform exactly one access, thereby obtaining ideal
span. A key observation we make is that although writing to a particular physical location cannot be
performed by multiple clients in parallel, the constraint does not hold for read operations. A Path ORAM
access involves the following three steps: (1) Reading a path from the tree (2) Path write-back after deleting
the block read (3) Path eviction to percolate blocks towards the leaves of the tree. In our protocol, each
client can read a single path from the servers in parallel. We suggest two different ways for performing
path write-back after deletion. The first method involves server computation by using a homomorphically
encrypted integer valid, which maintains whether a block is real. Each of the clients perform write-back in
parallel by updating only the value valid and the server performs additive homomorphic computation on
this value. The second method involves no server computation. Each node is written back to the tree by a
unique client, which is selected through some inter-client communication. Finally, the eviction procedure is
performed using reverse lexicographic ordering of paths introduced by Gentry et al. This ordering ensures
that clients evict paths that do not overlap with each other.
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1: function Access(addr, op, v′)
2: l←PosMap [addr]
3: stash← stash∪ReadPath(l)
4: l′ ← UniformRandom(0, N − 1)
5: PosMap [addr]← l′

6: v ← ReadBlockFromStash(addr, stash)
7: if op = Read then
8: return v to client
9: else

10: v ← v′

11: evict(l, stash)

Figure 1: Path ORAM data access algorithm. Here, PosMap is a map from an address addr to a leaf
l of the tree. ReadPath(l, addr) retrieves a path from the root until leaf l. ReadBlockFromStash(addr, stash)
retrieves a valid block with address addr from the stash.

2 Preliminaries

2.1 Oblivious RAM

The basic oblivious RAM setting consists of two parties, a client and a server. The client wants to outsource
storage of N data blocks, each of size B bits, on the server, and can also store a small amount of data
locally. The client outsources (encrypted) data blocks to the server and can arbitrarily access the blocks
using Access(op, addr, v′) commands. Here, op ∈ {Read,Write}, addr is the logical address of the block, and
v′ is the data to be written to the block when op = Write. An ORAM scheme hides a sequence of logical
accesses Access(op, addr, v′) made by the client from the untrusted server who observes the corresponding
physical accesses output by the ORAM. The input to the ORAM algorithm can be viewed as a sequence
of logical accesses Access(opi, addri, v

′
i). To “hide” the logical accesses, they are converted into multiple

physical accesses per request (opi,1, addri,1, v
′
i,1), . . . , (opi,q, addri,q, v

′
i,q). For the ith logical access, at the

end of the qth request, the client learns contents of block with address addri. Typical ORAM constructions
have q = polylog(N) physical accesses for every logical access.

2.1.1 Path ORAM

We provide a high-level overview of Path ORAM [20].

Server Storage. In Path ORAM, the data blocks are stored in a binary tree. Each node of the binary tree
is called a bucket and contains Z = O(1) blocks. Each block may contain B bits of information. Some of
these blocks may be dummy, i.e., contain no information. All the buckets are encrypted using a symmetric
key randomized encryption scheme and hence the server does not learn whether a block is dummy.

Metadata. For each block on the tree, along with the blocks, some metadata is also stored. In particular,
metadata consists of an identifier to denote the logical address addr and a validity bit valid. In addition, the
client stores a map PosMap from each addr to a path to a leaf l of the tree.

Main invariant. A key invariant of Path ORAM is that, each block is mapped to a leaf l ← [N ] in the
binary tree. This block is stored in some bucket from the root to the leaf l.

Stash. The client maintains a small amount of local memory, called the stash. This is used to hold
overflowing blocks from the tree.

Accessing a block. A pseudocode for the algorithm to access a block is shown in Figure 1. Each access
Access(op, addr, v′) of a block consists of two steps:
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1. Retrieve data. The client looks up the position map to determine the leaf l corresponding to addr.
It then reads the path from root to leaf l and adds them to the stash. The block with address addr
is then read from the stash. The position map for addr is updated to a randomly selected leaf l′. If
op = Write, it updates the block content to v′.

2. Path write-back and eviction. The eviction operation is used to upload blocks from the stash to
the tree. The client iterates over every block b in stash and inserts it along the path l on the lowest
possible bucket that is also along the path assigned to b. If there are no positions available, b remains
in the stash.

Obliviousness and size of stash. For every access, a single path is read from the tree. This location
of this path is statistically independent of all the previous paths accessed. Hence, intuitively, the access
algorithm is oblivious.

In [20], the authors analyze size of stash for polynomial number of accesses. They show that for a bucket
size Z = 5, tree height of dlogNe and stash size R, the probability of failure for s accesses is ≤ s.14.(0.6002)R.
Thus, for s = poly(N), for a stash size of O(f(N) logN), f(N) = ω(1), the probability of failure is negligible
in N .

Recursion. The position map consists of O(N logN) bits. When B > logN , the size of this position map
is smaller than the original data. This data can be stored recursively as another ORAM tree with an even
smaller position map. As was shown in [20], if this is done O(logN) times, the client storage reduces to O(1)
blocks. We assume such recursion is done in what follows.

Improved eviction procedure. Gentry et al. [7] introduced an alternative eviction procedure for Path
ORAM. In this procedure, instead of evicting along the same path chosen for reading the block, after t-
th access, a leaf l = DigitReverse(t) is chosen for eviction (DigitReverse(t) represents the bits of t in the
reverse-bit order). This reduces the required bucket size of Path ORAM from Z = 4 to Z = 2.

Bandwidth blowup. Path ORAM achieves a bandwidth overhead of O(log2N) when B = Ω(logN), and
O(logN) when B = Ω(log2N).

2.2 Oblivious Parallel RAM (OPRAM)

An oblivious parallel RAM (OPRAM) setting consists of (1) m stateful interactive clients and (2) a server
S. The m clients together outsource N (encrypted) data blocks, each of size B, to the server S. The server
stores M(N) data blocks, where M(·) is the storage overhead of the OPRAM scheme. Each of the clients
access logical data blocks in parallel. At the beginning of an access, each client i inputs Access(opi, addri, v

′
i)

where, opi ∈ {Read,Write}, addri is the logical address of the block, and v′i is the data to be written to the
block when opi = Write. Subsequently, the clients perform an interactive protocol where the clients either
(1) read/write data from server S or (2) communicate with other clients. We assume that all the clients
hold a shared symmetric secret key. Communication between clients as well as the data stored on the server
are encrypted using this secret key.

Write-conflict resolution. We note that in a PRAM, multiple Read operations to the same address can
be executed concurrently. However, when multiple clients perform a Write to the same address, only one of
the operations can be applied. Without loss of generality, we assume that write request of the client with
smallest identifier takes effect. Moreover, when multiple clients read and write to the same address during
one access, all clients read the contents of the block before the write operation is performed.

Correctness and obliviousness. During each access, the server S observes the physical accesses
by each client on S as well as the communication pattern between the clients. Let OPRAM(y) de-
note this sequence of interactions between the clients and the server as well as communication be-
tween clients. Let y = (y1, . . . ,yt) denote t OPRAM accesses where each access yj is given by yj =
(Accessj(op1, addr1, v

′
1), . . . ,Accessj(opm, addrm, v

′
m)).
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We say that an OPRAM algorithm is correct if for each access j ∈ [t], OPRAM(yj) returns data that
is consistent with yj except with negligible probability. In other words, for each client i, for each access t,
the following holds: client i receives block v as output, where v is the most recently written value to address
addri or ⊥ if addri has not yet been written.

We say that an OPRAM algorithm is secure if for two access patterns y and z with |y| = |z|, their access
patterns OPRAM(y) and OPRAM(y) are computationally or statistically indistinguishable. Respectively,
the OPRAM algorithms are called computationally or statistically secure.

Efficiency metrics. The following metrics have been used to determine the efficiency of OPRAM schemes.

• Client-server bandwidth blowup. The client-server bandwidth blowup is the ratio of number of
bits accessed by the slowest client in the oblivious PRAM for each logical access to the number of bits
accessed by a non-oblivious PRAM for each logical access.

• Inter-client communication. Different clients may access the same memory block from the server
during the same access and hence need to communicate to ensure obliviousness. Inter-client commu-
nication is the amount of data communicated by each client (in bits) with other clients for each logical
access.

2.3 Oblivious Inter-client Communication

In the following subsections, we discuss oblivious inter-client communication protocols from previous work [1,
2] that we use in our construction.

2.3.1 Oblivious Aggregation Protocol (OblivAgg)

An oblivious aggregation protocol is used to aggregate data held by multiple clients holding the same key.
Each client begins holding as input a key and some data. At the end of the protocol, the following holds: for
each key, a unique client (say, the client with the smallest id holding that key initially) outputs a function
Agg of all data associated with that key. We assume that the aggregation function Agg is associative, i.e.,
Agg(Agg(data1, data2), data3) = Agg(data1,Agg(data2, data3)).

OblivAgg

Input: Each client i has input (keyi, datai).
Output: Each client i receives either (key, data) or (⊥,⊥). For each key, a unique client outputs
(key, aggkey) where aggkey = Agg({dataj | j : keyj = key}).

There exists a protocol for this functionality that can be implemented in O(logm) rounds, where in each
round, each client sends O(1) messages of size O(logm+ |data|).

2.3.2 Oblivious Election Protocol (OblivElect)

An oblivious election protocol selects a unique representative for each address that appears in m client
requests. If there is a client that writes to an address, then the client with the smallest id writing to that
address is chosen as the representative. Otherwise, the party with the smallest id reading from that address
is chosen as the representative.

OblivElect

Input: Each party i has input (opi, keyi) where opi ∈ {Read,Write}.
Output: Each party i receives either rep or ⊥. For each unique key = keyi, the party with smallest i
having input (Write, key) will output rep. If no party issues a Write request, then the party with lowest i
with input Read, key will output rep. All other parties output ⊥.
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OblivElect can be implemented using OblivAgg with |data| = logN . Thus, the functionality can be
implemented in O(logm) rounds, where in each round, each client sends O(1) messages of size O(logm +
logN).

2.3.3 Oblivious Routing Protocol (OblivRoute)

This protocol allows each party to send a message to another party in such a way that the recipient of the
message is hidden.

OblivRoute

Input: Each client i has input (idi, datai), where 1 ≤ idi ≤ m.
Output: Each client i outputs {(idj , dataj) | idj = i}, i.e., the set of messages for which it is the receiver.

We use OblivRoute only in the scenario where the recipient (idi) is chosen at random by each client.
Boyle et al. [1] implement OblivRoute in O(logm) rounds, where in each round clients send messages of size
O(K(|datai|+ logm)); the protocol aborts with probability O(m logm2−K). This can be made negligible by
setting K = ω(log λ), where λ is a statistical security parameter.

2.3.4 Oblivious Multicast (OblivMCast)

The oblivious multicast protocol allows a subset of clients to multicast a message to other clients such that
each client can either act as a sender or receiver. Each client can send and/or receive exactly one message.

OblivMCast

Input: Each sender i has input (send, idi, vi), where 1 ≤ idi ≤ m. Each receiver i has input (recv, idi,⊥).
For every possible id, there is at most one sender with idi = id.
Output: Each sender i receives (idi, vi) as its output; each receiver i receives output (idj , vj), where
idj = i.

The OblivMCast protocol is similar to the OblivElect protocol and can be implemented in O(logm) rounds,
where in each round each client sends O(1) messages of size O(logm + logN + |v|) where v is the message
sent/received by a client.

3 Our OPRAM Construction

We describe our construction in this section. We first define parallel runtime blowup for an OPRAM access
in Section 3.1. Section 3.2 describes our construction for one recursion level assuming a shared local position
map between clients and assuming the server performs computation. Section 3.3 explains how this position
map can be offloaded to the server and accessed recursively. We discuss the security and asymptotics of our
construction in Section 3.4. Finally, we discuss how the construction can be modified to achieve the same
parallel runtime blowup without server computation in Section 3.5.

3.1 Parallel Runtime Blowup for an OPRAM Access

Definition. We assume a fixed bandwidth D between each client i and server S. In one round of commu-
nication, a subset of clients read/write D bits of information from/to the server. The parallel runtime is
the total number of rounds of client-server communication for each OPRAM access. Thus, parallel runtime
blowup is the ratio of rounds of client-server communication required for an OPRAM access to the rounds
of client-server communication required for a PRAM access.

Parallel runtime blowup for Chen et al. Figure 2a shows an example for parallel time for one access
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(a) Scheme by Chen et al. [2]
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(b) Our scheme

Figure 2: Parallel runtime for a single OPRAM access. The figure shows parallel runtime an OPRAM
access performed for m = 4 clients and two Path ORAM recursion levels. For ease of exposition, only paths
read by each client is shown.

in the scheme by Chen et al. for m = 4 clients and two Path ORAM recursion levels in addition to the
data ORAM. For simplicity, only paths read by clients are shown in the figure. Communication for path
write-back and eviction are not shown.

For each ORAM tree access, clients access one random path. The scheme by Chen et al. partitions
memory into m parts and one client is responsible for each part. As there are m clients, one of the clients
may access multiple paths. For example, in Figure 2a, when accessing the main ORAM tree, client C2

accesses three paths whereas C1 and C2 do not access a path. Similarly, in the first recursion level, client
C1 accesses two paths while C4 accesses none. Accessing a path at recursion level j depends on the position
map value obtained through recursion level j+ 1. Accesses between two recursion levels are thus dependent.
Hence, although client C4 does not access a block at the first recursion level, it cannot proceed to accessing
data ORAM.

For a fixed bandwidth of D bits, accessing one block of B bits requires dB/De rounds of commu-
nication. The slowest client accesses up to O(λ) paths with all but negligible probability. For Path
ORAM, each path consists of O(logN) blocks and there are O(logN) recursion levels. The parallel run-
time is thus O(d(Bf(m) logm logN)/De logN) rounds of communication. The parallel runtime blowup is
O(d(Bf(m) logm logN)/De logN)

dB/De = O(f(m) logm log2N).

Parallel runtime blowup for our construction. The parallel runtime blowup for our construction is
shown in Figure 2b. In contrast to Chen et al., in our construction, each client accesses exactly one path
for each ORAM tree access. By a similar analysis as above, it can be shown that our construction obtains
parallel runtime blowup of O(log2N).

3.2 Non-recursive Construction

At a very high level, our construction follows a structure similar to the OPRAM protocol of Chen et al.
However, compared to their work, we ensure that each client performs an equal amount of work in parallel
for every access.

Server storage. For simplicity, we assume that both the number of data items N and the number of clients
m are powers of 2. The server storage is organized as a complete tree with N leaves numbered 0 to N − 1,
but with the top logm levels of the tree removed. In other words, the data is organized as a forest containing
m trees T1, . . . , Tm, each of height logN − logm. Each node in the tree is a bucket of size Z = O(1) blocks,
each of size B bits. As in Path ORAM, blocks are encrypted (see more below) and some of them may be
dummy blocks.

Each block logically stores some data, the logical address addr to which that data corresponds, and an
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integer valid with valid = 1 indicating that the block is valid. The data and address are encrypted using a
symmetric-key encryption scheme, whereas valid is encrypted using an additively homomorphic (public-key)
encryption scheme.

Managing a tree. Client i is responsible for managing the i-th tree Ti and all leaves therein. That is,
client 1 is responsible for leaves 0, . . . , N/m − 1; client 2 is responsible for leaves N/m, . . . , 2N/m − 1, and
so on. The client responsible for a leaf l, denoted Resp(l), is in charge of:

1. Maintaining a stash for all blocks assigned to leaf l. As in [2], the required stash size is ω(log λ) +
O(logm).

2. Performing an eviction operation for the path to leaf l.

Access. Consider a logical access where each client begins holding input (opi, addri, v
′
i) with opi ∈

{Read,Write}, 1 ≤ addri ≤ N , and v′i = ⊥ in case of a read operation. We assume the clients have ac-
cess to a shared position map.

1. Select block representatives. The m clients run sub-protocol OblivElect (Section 2.3.2) where each
client i has input (opi, addri). Each client outputs rep or ⊥. We call any client who does not output ⊥
a representative.

2. Lookup position map. Each client i does:

• Representative clients. If client i is a representative for some address addri, then it uses the
shared position map PosMap to obtain the leaf li corresponding to addri. It then generates a
fresh leaf l′i ← [N ] and sets PosMap (addri) = l′i.

• Other clients. If client i is not a representative, then it performs a random access to PosMap.
It generates uniform leaves li, l

′
i ← [N ].

3. Search for block in stash. Suppose client j = Resp(li). Each client i does:

• Representative clients. Client i sends addri to client j.

• Other clients. Client i sends ⊥ to client j.

Client j looks up addri in its stash. If the block is found in stash, it is deleted and returned to client i.
Otherwise, a dummy block is returned to client i.

4. Read paths. Suppose j = Resp(li). Each client i reads a path P(Tj , li) from root of Tj until leaf li.
Note that overlapping paths can be read by two different clients.

5. Delete block with address addri. In this step, the block that was read by each client is deleted on
the server.

• Representative clients. Suppose k-th block on P(Tj , li) has address addri and valid = 1. The
client generates a vector Y of length |P(Tj , li)| = Z logN . The k-th element of this vector is
Enc(1) and all other elements are Enc(0), where Enc is an additively homomorphic encryption
scheme. The client sends Y to the server. For the k-th block in the path, server computes
Enc(validk)× Yk.

– For the block that is to be deleted, Yk = Enc(1). Hence, Enc(validk)×Yk = Enc(1)×Enc(1) =
Enc(2). validk = 2 implies an invalid block.

– For all other blocks, Yk = Enc(0). Hence, Enc(validk) × Yk = Enc(validk) × Enc(0) =
Enc(validk). Thus, these blocks are not invalidated.

• Other clients. The client generates a vector Y of length |P(Tj , li)| where each element is Enc(0).
The client sends Y to the server. The server performs Enc(validk)×Enc(0) = Enc(validk). Thus,
none of these blocks are invalidated.
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6. Answer client requests and update. At the end of the previous step, every representative client
holds vi. The clients now run a protocol OblivMCast where:

• Representative clients. Representative clients act as senders and multicast the block to all
clients that requested it. Representative clients use input (send, addri, vi). If the representative
client requests a write operation, it updates value of the block to v′i locally.

• Other clients. Non-representative clients do not hold valid blocks and act as receivers in the
protocol. Hence, client i uses input (recv, addri,⊥). Client i receives output (addri, v

′′
i ) where

addri is the block that client i requested and v′′i is the value of the block.

7. Route blocks to clients responsible for the block. Recall that l′i is the new leaf generated
uniformly at random by client i in step 2. Suppose j = Resp(l′i). The clients run an OblivRoute protocol
where each representative i uses input (j, (l′i, addri, bi)) and other clients use (j, (l′i,⊥,⊥)). Each client
k receives a set of blocks {(l′p, ap, b′p)} where k = Resp(l′p). The client adds valid (non-dummy) blocks
to local stash.

8. Evict using reverse lexicographical paths. Each client uses a reverse lexicographical path (as
suggested by Gentry et al. [6]) to evict as in Path ORAM. The reverse lexicographical ordering ensures
that a client i responsible for managing a tree Ti evicts exactly one path from the tree.

3.3 Recursive Construction

Our solution for the recursive construction uses the same idea as Chen et al. [2]. Our non-recursive con-
struction stores N blocks of size B bits and requires the existence of a shared position map PosMap of size
N logN bits. Assuming B ≥ c logN, c > 1, one can recursively store the position map in O(logN) trees to
achieve a position map of size O(1) blocks. This can be stored by one of the clients and other clients can
access this information using OblivAgg and OblivMCast protocols.

In our OPRAM construction, as m clients access m blocks, if they request to write to the same block one
of the clients is chosen as a representative and this client performs the write. However, when position map
is accessed, position values for different data blocks may be stored in the same position map block. Thus,
for correctness, updates to all these distinct position map values in the same position map block should be
incorporated. This can be achieved by replacing the OblivElect protocol in step 1 by an OblivAgg protocol
during recursion. Here, each client inputs the new leaf values and the representative client aggregates these
values by performing a union of the values. More precisely, each client i uses input (keyi = addri, datai = li),
and the aggregate function is Agg(data1, data2, . . .) = data1||data2|| . . .. The representative client outputs
(rep,Agg(data1, data2, . . .)) while other clients output (⊥,⊥).

Given that a position map block stores a maximum of a constant c position map values, the size of the
aggregated data is bounded by c logN . Thus, this step of the protocol proceeds in O(logm) rounds, where
in each round, every client sends O(1) messages of size O(logN + logm) bits.

3.4 Obliviousness and Asymptotics of our Construction

Obliviousness. We first note that all the inter-client protocols discussed in Section 2.3 are oblivious. Thus,
steps 1, 6 and 7 are oblivious. Step 2 is a recursive access to position map. For each access, steps 3, 4 and
5 reveal a new leaf and hence a new random path that is statistically indpendent of all the paths accessed
before. In step 8, each client a path is chosen deterministically. As each of these steps are oblivious, the
access algorithm is oblivious.

Asymptotics. Let us first find the client-server bandwidth required. Let |ct| denote size of the AHE
ciphertext for valid. Due to reverse lexicographical ordering of paths for eviction, each path is evicted every
N/m accesses. Thus, the maximum value that valid can assume is N/m. Assuming Paillier cryptosystem,
|ct| = O(κ+ log(N/m)) bits, where κ is the number of bits used in the modulus of Paillier cryptosystem.
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Steps 1, 3, 6 and 7 do not involve client-server communication. Step 2 involves accessing O(logN)
position map blocks (one from each recursion tree) of size O(logN) bits. For each position map block, a
path of Z logN = O(logN) blocks is read. The write-back operation involves writing back |ct| logN bits,
where This results in O(log2N(logN + |ct|)) bits for position map data.

For data ORAM access, in steps 4 and 8, each client accesses exactly one path which is O(logN) blocks
and O(logN) ciphertexts. Step 5 requires uploading O(logN) ciphertexts of an AHE scheme. This results
in accessing O((B + |ct|) logN) bits by each client. Thus, the per client client-server communication is
O((B+κ logN +log2N) logN) bits. For a sufficiently large block with B = Ω(κ logN +log2N), the blowup
is O(logN). For B = Ω(κ+ logN), the blowup is O(log2N).

For each of the steps, when clients communicate with the server, each client accesses a single path on the
server independently of each other. Thus, the parallel client-server runtime blowup is O((logN + κ) logN)
blowup.

3.5 Avoiding Additive Homomorphic Encryption

Step 5 of our construction in Section 3.2 requires the server to perform additive homomorphic encryption
(AHE). In this section, we describe the protocol without using AHE. In this step, all clients write back blocks
in the read path except the block b of interest. b is replaced by a dummy block. This was done by setting
the value of valid 6= 1 using AHE.

In this modified construction, we use valid′, which is a bit to indicate validity of the block. This bit
is stored encrypted using symmetric key encryption on the server. As two intersecting paths can be read
by two clients and the required blocks can reside in the intersecting portions (buckets) of the paths, it is
necessary that only one client deletes and writes back this intersecting portion.

Let pathi,k denote the length k bit prefix of path li. Each client performs the following - for each level
lev = logm+ 1, . . . , logN of the tree -

• The clients run OblivAgg procedure with keyi = pathi,lev, datai = bi if bi is in the current level of the
path li, otherwise datai = ⊥. The aggregation function is the union function Agg(data1, data2, . . .) =
data1||data2|| . . .. As the output of the protocol, for each block with bucket prefix pathi,lev held by
clients, a representative client j is chosen for deletion of bucket pathi,lev.

• The representative client j performs the deletion of bucket pathi,lev in the ORAM tree Tpathi,lev .

The above step ensures that a unique client is selected for deleting (possibly zero) blocks from every
bucket that was read. The other steps from Section 3.2 remain unchanged.

Client-server bandwidth blowup and parallel runtime blowup. The only modification from analysis
in the previous section is that, AHE ciphertexts are not read/written by clients. Hence, the per client client-
server communication is O((B + log2N) logN) bits. For B = Ω(log2N), the per client bandwidth blowup
is O(logN) while for B = Ω(logN), the blowup is O(log2N). Similarly, the client-server parallel runtime
blowup is O(log2N) for all block sizes.

4 Conclusion

In this work, we show a scheme that obtains O(log2N) client-server bandwidth blowup with O(log2N)
parallel runtime.
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