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ABSTRACT 

This paper describes an approach to integrating 
functional and non-functional design verification for 
embedded control software.  The method uses functional 
models, which have traditionally been used in functional 
verification processes, to drive non-functional verification 
also.  This is achieved by defining strategies for 
extracting non-functional models, which contain 
structural and quantitative information about non-
functional characteristics such as performance and 
modifiability, from functional ones.  Non-functional 
verification tools may then be used on the resulting 
models to check that desired non-functional properties, 
such as ease of modification, are catered for in the 
design.  An extended example involving the analysis of a 
model for modifiability is presented, as is tool support for 
extracting non-functional models from functional ones. 

INTRODUCTION 

An emerging best-practice in embedded-software 
engineering is to conduct extensive verification and 
validation (V&V) during the design phases of the 
development process, in order to catch errors and 
inconsistencies as early as possible.  The widespread 
adoption of model-based development within the 
automotive industry has opened up broad new 
opportunities for design V&V, since the availability of 
executable models in notations like Simulink® / 
Stateflow®

1
 and ASCET®

2
 at design time enables 

extensive testing and analysis to be undertaken before 
any source code has actually been written. 

In conventional model-based development workflows, 
design models are first constructed and then verified 
against the functional requirements (specifications of 
what the system must or must not do) using simulation, 
coverage-based testing, or model-checking.  
Requirements that relate to the non-functional aspects of 
system behavior (for instance resource usage, 
timeliness, modifiability) are typically reasoned about, if 
at all, in an ad-hoc qualitative manner. 

The motivation for the work in this paper is to give 
embedded software designers tools to conduct rigorous, 
coordinated non-functional and functional design 
verification and validation.  The proposed approach to 
achieving this goal relies on the use of functional models 
in notations such as Simulink to drive both functional and 
non-functional design analysis, using tools developed in 
the Computer Science research community to undertake 

                                                      
1
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the latter.  The core technical contribution described in 
this paper is an automated framework, and associated 
tools, for extracting non-functional design models from 
functional ones, so that appropriate verification of  non-
functional properties may be done at design time. 

The rest of the paper is arranged as follows. The next 
section provides background in functional and non-
functional modeling and verification, with a focus on the 
specific non-functional attribute of modifiability.  
Strategies for computing modifiability models from 
functional ones are explained, and an example and 
tooling described.  The paper then concludes. 

FUNCTIONAL AND NON-FUNCTIONAL 
MODELING AND VERIFICATION 

This section briefly reviews functional modeling and 
verification and introduces the approach to non-
functional modeling and verification that is used in this 
paper. 

FUNCTIONAL VERIFICATION 

A functional model of a system is a mathematical 
specification of the operational behavior of the system. It 
is typically encoded using an executable modeling 
notation.  A functional requirement is a statement of what 
the system must or must not do, usually expressed in the 
form: if a given condition holds, then the system should 
respond appropriately. Functional verification consists of 
checking whether the functional model satisfies the 
functional requirements. 
 
Simulink is widely used in the automotive industry for 
functional modeling. In Simulink, a model consists of a 
number of blocks (units of functionality) that exchange 
typed data (signals) through what are known as 
connections. These blocks are hierarchical; a block, in 
turn, may consist of other blocks and inter-connections 
between them.  Blocks that contain other blocks are 
typically referred to as subsystems.  In Figure 1, a 
Simulink diagram is shown of an abstracted body control 
application function. The top subsystem (X) handles all 
high level inputs and provides all outputs of the diagram. 
X processes the input signals and controls the 
subsystems Y and Z accordingly. Both Y and Z report on 
their current state by feeding back a signal to X. 
 
 

 
 
Figure 1:  Example functional model given in Simulink. 

 
Functional verification of models can be performed in a 
variety of ways:   through exhaustive, guided simulation 
[1]; testing of the code automatically generated from the 
model [2];formal methods-based model checking or 
deductive reasoning [3]; and instrumentation-based 
model testing [4]. 
 
NON-FUNCTIONAL VERIFICATION  

While functional modeling and verification has been 
studied extensively and is becoming widespread in 
practice, comparatively little attention has been placed 
on formally checking designs against non-functional 
requirements.  Such requirements typically refer to 
desired structural or system-related properties, such as 
performance (will the software ensure desired timing?), 
security (does the software preclude unintended use?) 
and modifiability (is the software easy to modify and 
extend?).  
 
In the Computer-Science research community, 
technologies such as ArchE [5] have been developed for 
reasoning rigorously about the non-functional aspects of 
software designs.  ArchE focuses on software-
architecture models as the design artifacts of interest; it 
allows designers to build such models and analyze them 
for different non-functional properties. In ArchE, basic 
software architecture information is enriched with 
quantitative information regarding the non-functional 
aspect of interest (modifiability, performance, etc.).  The 
resulting quality-attribute model can then be analyzed to 
answer questions such as likely time to perform different 
modifications, expected performance, etc.  Different 
quality-attribute models have been built and applied 
within ArchE [6], which is also the basis of Bosch’s Rapid 
Architecture Prototyping Tool (RAPT).  The remainder of 
this section describes ArchE’s non-functional quality-



attribute models and requirements in more detail, with 
particular attention paid to the modifiability quality 
attribute [7] that is the focus in the remainder of the 
paper. 

ArchE quality-attribute models contain a mixture of 
structural and quantitative data.  The structural, or 
architectural, information consists of the following.  
 

• Responsibilities: A responsibility is defined to 
be a unit of system functionality. 
 

• Relationships: A relationship exists between 
two responsibilities if one depends, in any way, 
on the other.  
 

For the modifiability quality attribute, a non-functional 
architecture is given as an impact graph. The nodes of 
the impact graph are the responsibilities and the edges 
are the relationships. 
 
The quantitative information in ArchE models associates 
numbers to responsibilities and relationships.  The 
interpretation of these numbers depends on the quality 
attribute being modeled:  in the case of performance, the 
numbers may represent timing information, for example.  
In the modifiability model two types of quantitative 
information are used. 
 

•  Cost of change (coc): Each responsibility has 
an associated cost of modification (say d). Any 
change request that directly affects this 
responsibility is assumed to incur a cost of d 
person-days. 
 

• Probability of change propagation (pcp):  
Because of the presence of relationships 
between responsibilities, a responsibility B may 
contribute indirectly to the total cost of 
modification of responsibility A if B connected via 
a relationship to A. The cost of propagation of a 
change from A to B is calculated by multiplying 
the probability of change propagation (p) from A 
to B with the direct cost to modify B.  

 
The cost to modify a responsibility is typically used to 
label the corresponding node in the impact graph, while 
the probability of change propagation labels the relevant 
edge.  In this way, an impact graph incorporates both 
structural and quantitative information. 
 
In ArchE, non-functional requirements, and modifiability 
requirements in particular, are framed as quality-attribute 
scenarios. Quality-attribute scenarios consist primarily of 
a stimulus and a response – a stimulus in this case 
corresponds to a request for a specific modification, and 
a response describes an upper bound on the amount of 
time the modification should take.  It should be noted 
that, in contrast with traditional functional requirements 
workflows, in which requirements assumed to be known 
in advance of fielding the system, non-functional 
requirements arise both before design and after 

deployment.  In the case of modifiability, for example, 
designers may have some pre-deployment expectations 
about expected change requests and may conduct 
modifiability analyses on the associated quality-attribute 
scenarios during design time.  The same modifiability 
models can be used post-deployment to assess the likely 
costs of change requests that arise after the system is 
fielded. 
 
 Figure 2 illustrates an impact graph derived from the 
functional model shown in Figure 1. Each top-level 
subsystem in this case is assumed to represent a 
different responsibility, while the connections among the 
subsystems reflect the relationships.   Note that the 
responsibility X shares relationships with both Y and Z, 
but the latter two are not directly related to each other. 
The quantitative information is represented as 
annotations to the structural elements. The number in 
each responsibility represents the cost of change in man-
days and the number at the relationships expresses the 
respective probability of change propagation.  Later in 
this paper, automated mechanisms for computing this 
information are described. 
 

 
 

Figure 2: Impact graph capturing the structural and 

quantitative information of the example functional model. 

 
 
The following describes a quality-attribute scenario, or 
more specifically a modifiability scenario, for adding a 
new input signal to responsibility X that also indirectly 
influences the signals to responsibilities Y and Z. 
 
Stimulus: A new input shall be added to the X 
subsystem that carries a Boolean value. The new input 
signal represents an additional condition under which the 
subsystem Y and Z shall be activated. 
 
Response Measure: Within 7 man-days. 
 
Note that while this scenario primarily affects 
responsibility X, it also indirectly affects the 
responsibilities Y and Z. X may need to send additional 
signals to Y and Z based on the new input signal and 
both must be able to handle the modified signals. Thus 



the change is expected to propagate from the 
responsibility X to the two other responsibilities Y and Z.  
 
Given an impact graph with assigned costs of 
modification and probabilities of propagation of change, 
ArchE’s reasoning framework for modifiability estimates 
the costs of changing one or more responsibilities. The 
framework calculates for each responsibility the 
probability that changing a specific responsibility will 
propagate to it. The average cost for this change can 
then be calculated by computing the sum of all the cost 
of change times the calculated probability 
 
 

EXTRACTING IMPACT GRAPHS FROM 
FUNCTIONAL MODELS 

The current state of non-functional reasoning 
frameworks fits uneasily with existing model-based 
development approaches, since the models required for 
functional and quality-attribute analysis are in different 
notations and must be constructed and managed 
separately as a result.  

The contribution of this paper lies in defining a mapping 
from functional models given in Simulink to non-
functional models in the form of impact graphs that 
ArchE can analyze for modifiability. Specifically, the 
structural and quantitative information required to 
populate the non-functional models is derived, with a 
minimum of user intervention, from the functional 
models. This serves the purpose of unifying the 
verification activities for functional and non-functional 
design attributes by integrating the two hitherto 
disconnected activities into a tightly coupled one that 
works on a unified model.  In the workflow that this work 
is intended to support, designers would construct a 
single functional model and subject it to both functional 
and non-functional verification using the mapping 
procedure outlined in this section. 

 
Figure 3: The user manually extracts functional and non-

functional attributes from the system and feeds it into 

ArchE. 

 
 
 
 
 

 
Figure 4: Our approach retrieves the functional and non 

functional attributes mostly automatically from the 

functional model with only little user intervention. 

 
As noted in the previous section, impact graphs contain 
two sorts of information:  structural and quantitative.  The 
section describes how each of these types of information 
is computed from functional models. 

EXTRACTING STRUCTURAL INFORMATION FROM 
FUNCTIONAL MODELS 

 
The impact graph, as introduced in the last section, 
consists of an underlying graph whose nodes are 
responsibilities and whose edges are relationships.  The 
first step in extracting an impact graph from a Simulink 
model is to identify these structural elements within the 
Simulink model itself. 
  
The intuition underlying this work is to view the top-level 
subsystems of a given Simulink model as system 
components.  In the non-functional domain, the 
analogues to these components are the responsibilities 
that, through data dependencies, together discharge the 
overall purpose of the system.   Based on this intuition, 
the approach in this paper maps the top-level 
subsystems in the functional model to responsibilities in 
the non-functional model. 
 
Similarly, the connections between subsystems in the 
functional model have relationships as their analogues in 
the non-functional domain.  More specifically, if  
subsystem A is mapped to responsibility R and 
subsystem B to responsibility S, then a relationship 
exists between R and S if and only if there exists a 
connection between A and B in the functional model. 
Note that the directionality of the connection is not taken 
into account:  if A reads inputs from B or writes outputs 
to B there is a connection between R and S.  The reason 
for this has to do with a sometimes unappreciated bi-
directionality of modifiability:  if one modifies the data 
type a variable, for example, then both the statements 
that write to that variable as well as the ones that read 
from that variable must be modified. 
 
The conceptual mapping of the structural elements of the 
functional model to the non-functional architecture is 
summarized in the Table 1. 
 
Table 1: Mapping between non-functional and functional 

structural elements. 

Non-Functional 
Structural Elements 

Corresponding 
Functional Elements 

Responsibilities Subsystems 
Relationships Connections 



EXTRACTING QUANTITATIVE INFORMATION FROM 
FUNCTIONAL MODELS 

The quantitative information required to populate impact 
graphs is obtained from two metrics computed on the 
functional model. 
 

• Modifiability Metric: This metric captures how 
expensive in terms of man-days it is to modify a 
given subsystem. 
 

• Connectivity Metric: This metric measures the 
degree of connectedness between two 
subsystems. 
 

These metrics are defined below.  Table 2 summarizes 
the relationship between these metrics and the 
associated quantities used to annotate impact graphs. 
 
Table 2: Mapping between non-functional and functional 

measures. 

Impact Graph 
Quantities 

Corresponding Functional Model 
Measures 

Cost to Change a 
Responsibility (coc) 

Modifiability Metric 

Probability of 
Change 

Propagation (pcp) 
Connectivity Metric 

 

Modifiability Metric 

In the modifiability framework, each responsibility has an 
associated cost of change (coc) number that captures 
the estimated number of man-days considered 
necessary to perform any kind of modification to it. The 
modifiability metric provides a means of deriving these 
coc numbers based from functional models.  
 
No direct method to compute such a metric is known to 
exist in research literature; the closest approach was that 
followed by Vitkin et al [8], who derived structural metrics 
from Simulink models for the purpose of estimating auto-
coding effort.  In the following discussion, their approach 
is first summarized, and then the customizations needed 
to reflect an appropriate metric of modifiability are 
detailed. 
 
Autocoding Effort 

The calculation of the auto-coding effort for a functional 
model is based on complexity values for the blocks and 
connections in the model.  

A functional model consists of different types of blocks. 
Each block has a set of parameters. When auto-coding a 
functional model each parameter must be set by the 
user, thus contributing to the total effort. This is 
accounted for by assigning a complexity value to each 
block (BSON) which is defined to be equal to the number 
of parameters the block has. Based on the individual 
complexity values for each block, the total block 

complexity of a given model is the sum of all individual 
block complexities. 
 

∑
=

=

N

k

kBSONBC
1

 

 
BC = Total block complexity for a functional model. 
N = Number of blocks in the functional model. 
BSONk = Individual block complexity of block k. 
 
Regarding connections, only two types of connections 
are distinguished in Vitkin’s work: connections that carry 
binary signals and those that carry non-binary signals. 
While auto-coding binary connections is trivial, the same 
task for non-binary connections requires more effort, as 
it is necessary to ensure that the variables in the 
generated code are precise enough and can hold large 
enough values. The complexity for binary connections 
are ignored (MCN=0) and all non-binary connections 
have a complexity value of 1 (MCN=1). In the same 
fashion as for the blocks, the total connection complexity 
is the sum over all individual line complexities. 
 

∑
=

=

L

l

lMCNCC
1

 

 
CC = Total connection complexity of functional model. 
L = Number of connections in the functional model. 
MCNl = Individual connection complexity of connection l. 
 
The total auto-code complexity of the functional model is 
a weighted sum of the total block complexity and the 
total connection complexity. Both the block and the 
connection complexities are weighted using the factors 
K1 and K2, respectively. 
 

CCKBCKMC *2*1 +=  

 
MC = Total model complexity 
K1 = Weight for total block complexity 
K2 = Weight for total connection complexity 
 
The value of the tuning coefficients K1 and K2 depend 
upon the type of auto-generated code and other 
organizational factors. By adjusting the coefficients, one 
can take into account characteristics that are specific to 
the generated code and thus increase the accuracy of 
the result. Vitkin et al. did not provide any guidelines as 
to how to determine these factors but mentions that 
these rely on expert judgment. 
 
Defining the Modifiability Metric 

Several modifications to the original formulation of Vitkin 
numbers are necessary in order to adapt them to the 
domain of modifiability.  One the one hand, the 
complexity values for blocks and connections that 
express the effort for auto-coding the respective element 
do not appropriately reflect the effort for modifying it. 
Further, the values for the coefficients K1 and K2, i.e. the 



weights for blocks and lines, also need to be 
appropriately defined for the modifiability domain. The 
basic principle for calculating the modifiability metric of 
modifiability however remains the same as that used by 
Vitkin et.al:  the modifiability measure for a subsystem is 
calculated by accumulating the complexities of all blocks 
and lines that are contained in it. 

Block Complexity.  When a new basic block is added to 
a functional model, there are a number of tasks that 
need to be executed. First, the engineer must decide 
which basic block is to be added. This necessarily 
means understanding the semantics  of the block. 
Second, the engineer needs to determine the part of the 
model in which the block is to be inserted. Third, the 
engineer needs to locate the basic block in the library, 
drag it into the model and connect all its input and output 
ports. Lastly, the functional model must be tested after 
the block was added to it. Based on the above 
observations, a complexity schema that assigns 
complexity values to each block type was developed. 
 
A list was created with 30 basic blocks that were used in 
the models on which this approach was applied (for the 
purposes of this work, effort data for 74 different models 
constructed as part of a body-electronics modeling 
project were used). Each block was then evaluated 
regarding the difficulty and effort of the tasks for creating 
that block. The complexity of the block was then rated on 
a scale from 1 to 10 with 1 being the least complex and 
10 being the most complex block (the term BCN is used 
to refer to this number). This produced a schema that 
rated the complexity of each block in relation to other 
blocks. For instance, the “outport” block was considered 
to be of little complexity and was hence assigned a 
complexity of 1. The “switch-case” block requires 
defining a number of Boolean expressions and was 
assigned a complexity value of 5.  
 
Table 3: List of sample blocks and the complexities that 

were assigned to them. 

Block  BCN 

Subsystem  1 

Outport  1 

Costant  3 

Inport  1 

Merge  2 

Memory  3 

Switch-Case  5 

Action-Port  3 

If  5 

 
 
Connection Complexity.  The connection complexity, 
CCN, for every connection was then set to 1. When 
creating a new connection, one does not need to spend 
more effort than on non-binary connections. Thus, in 
contrast to the Vitkin approach, no distinction is made 
between binary and non-binary connections and an equal 

complexity value is assigned to both of them. The effort 
for determining which blocks and ports to connect is 
already accounted for in the BSON numbers. The low 
connection complexity (i.e. 1) expresses only the effort 
for adding the connection. 
 
Although these values were determined by engineers 
who were already familiar with the design of functional 
models, they might not reflect the situation in different 
contexts or domains.For example, the numbers will be 
higher for novice modelers than for experts. To adapt to 
a different environment, one can simply modify this 
schema according to particular needs and preferences. 
 
Coefficients. Using the coefficients K1 and K2 provided 
in the example by [8] resulted in an effort estimation that 
was much higher than the experimental data collected in 
the course of building the 74 models alluded to above.  
Accordingly, adjustments were made:  0.02 for K1 and 
0.001 for K2 produced the results that coincided most 
closely with recorded effort.  
 
Modifiability Metric Formula.  In a last step, the 
formula for computing the total complexity of a 
subsystem must be given. The modifiability of a 
subsystem is calculated by applying the formula for the 
total complexity to the blocks and connections that are 
contained in the respective subsystem. The metric of 
modifiability for each subsystem is as follows:  
 
MM = K1 * BMC + K2 * CMC 
 
BMC stands for the total block complexity and CMC 
stands for the total connection complexity. The block 
complexity is the sum of block complexities of the blocks 
contained in the subsystem. Likewise, the total 
connection complexity is the sum of all connections 
contained in the subsystem. 
 

∑= kBCNBMC  

 ∑= lCCNCMC  

 
Here k ranges over the blocks in the subsystem, while l 
ranges over the connections.  The example below 
(Figure 5) shows a high level subsystem having three 
inputs and one output signal. 
 

 
Figure 5: High level subsystem of a functional model. 

 
Figure 6 shows the blocks and connections that are 
contained in that high level subsystem. Each block is 
annotated with its complexity (BCN) value. The 
modifiability value of the high-level subsystem is 



computed based on the complexity of the subsystems 
and connections it contains. 

2

1

3

1
3 3

4

1

1
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Figure 6: The subsystems inside the high level subsystem 

annotated with their respective complexity values. 

 
The total block complexity is determined by multiplying 
the count of each subsystem with its complexity value 
and then summing over these values. 
 

BC = 3*1 + 2*3 + 1*3 + 1*3 + 1*2 + 1*4 + 1*1 
       = 22 
 
Since each connection has a complexity value of 1, the 
connection complexity is the sum over all connections. 
 

CC = 10 
 
The modifiability of the high level subsystem is then 
computed by adding up the weighted block and 
connection complexity. 
 

MM = 0.02*22 + 0.001*10  
= 0.44 + 0.01 
= 0.45 

 
Modeling the high level subsystem is estimated to 
require 0.45 man-days according to our model. 
 
Connectivity Metric 

The connectivity metric assigns probability of change 
propagation numbers (i.e. edge weights of the impact 
graph) from design models rendered in Simulink. The 
metric is based on the following intuition: the greater the 
number of connections between two Simulink 
subsystems, and the deeper they are, the greater the 
chance that modifying one will lead to the modification of 
another, i.e. the greater will be the probability that 
change propagates between their corresponding 
responsibilities. 
 
The connectivity metric is based on the notion of signal 
propagation. A change that affects one block propagates 
to its neighbors through modifications of the signal that 
travels on the connection. For instance, a change to a 
subsystem (called hereafter the source) might cause a 
change to the range of values, the precision, etc. of a 
signal that it outputs. The signal then travels to a 
neighboring subsystem (the target), which may also 
require modification as a result. The reverse is also true. 
A modification to a target subsystem might cause 
modifications to the signal, which in turn might require 
changing the source subsystem to adapt to the modified 
signal.  

 
If the target subsystem is atomic (i.e. does not contain 
any other blocks), it is said to be fully impacted by the 
signal, i.e. the connectivity between source and target is 
1 (100%). When the target block is contains multiple 
blocks, it needs to be determined to what extent these 
are affected by the signal in order to estimate the total 
impact to the target subsystem. The illustration in Figure 
7 shows such a set-up. Subsystem a is the source 
subsystem, and it is connected to the target subsystem 
b, which contains blocks c, d, e, f, g, h, and i. The signal 
that is output by the source subsystem a travels to 
subsystems contained in b, in this case c. Since the 
signal is an input to c, it also affects its output signal, 
which is input to subsystems d and e. The signal 
propagates in the same way to subsystems f and g. 
However, the signal never reaches the subsystems h 
and i.  

 
Figure 7: Conceptual view of functional model in which 

the external connection emanates from subsystem a and 

impacts parts of the target subsystem b. 

 
This intuition is used to define the degree of impact that 
can propagate though a connection, i.e. its connectivity. 
First, we assume that all blocks that are affected by the 
connection (i.e. by the signal traveling on it) have been 
identified i.e. the affected blocks. They can be 
determined by transitively traversing the connections 
touch an affected subsystem. In the example in Figure 7, 
the affected blocks are c, d, e, f, and g.  
 
Previously a complexity value for each subsystem type 
was defined. Now  the affected complexity is defined to  
to be the sum of the complexities of all affected blocks. 
 

AC = ∑
blocksaffected

i
BCN  

 
The affected complexity in the example is the sum of the 
complexities of the blocks a-f, i.e. 20. 
 
The affected complexity expresses how much complexity 
in a subsystem is affected by a connection. This impact 
measure will be used subsequently instead of simply 
counting the affected subsystems in order to account for 
the different amount of effort that is needed to modify 
subsystems of different complexities. 
 



In the next step we compute the connectivity as the 
percentage of total complexity that is affected by the 
connection. The total complexity is simply the sum of the 
complexity values of all the blocks it contains. For 
instance, the total complexity of subsystem b is 28. 
 
CN = AC / total subsystem complexity 

 
In summary, to compute the connectivity of a connection, 
we first determine all subsystems in the target 
subsystem that are affected by it, compute the affected 
complexity, and then divide it by the total subsystem 
complexity. 
 
In the example, we have determined the affected 
subsystems to be a-f. The affected complexity is 20 and 
the total complexity is 28. The connectivity of the 
relationship in direction from a to b, therefore, 20/28 = 
0.71 = 71%. 
 
A simple extension to the approach enables it to handle 
multiple connections between subsystems. The affected 
subsystems are determined by identifying all subsystems 
that are affected by a signal from any of the external 
connections that originate in the source subsystem and 
end in the target subsystem. Computing the affected 
complexity and the connectivity is then done in the same 
fashion as described above for single connections.  
 
 

NON-FUNCTIONAL VERIFICATION – AN 
EXAMPLE 

This section illustrates the concepts defined in the 
previous sections with the example functional model 
introduced previously. The figure below (Figure 8) shows 
the top-level view of the model. Each step of extracting 
the structural and quantitative information from the 
functional model and the way the impact graph is 
updated in each step is illustrated in the following 
discussion.  
 
 

 
Figure 8: The high level view of the example model. 

The steps in sequence are: 
 

1. Extracting the responsibilities from the functional 
model. 

2. Calculating the cost of change from modifiability 
metric. 

3. Extracting the relationships from the functional 
model. 

4. Calculating the probability of change propagation 
from the connectivity metric. 

 
Each is discussed in turn below. 
 
EXTRACTING RESPONSIBILITIES 

The functional model of the example has three top-level 
subsystems: X, Y, and Z. Each of these subsystems will 
be represented in the modifiability model as 
responsibilities. Figure 9 shows all the responsibilities for 
the example system that are extracted from the 
functional model.  
 

X

Functional Model

Y

Z

Impact Graph

 
 
Figure 9: The responsibilities of the modifiability model on 

the right are created based on the subsystems in the 

functional model on the left. 

 
 
COMPUTING THE COST OF CHANGE  

Figure 10 shows how the modifiability values for each 
responsibility in the example model are computed. 
 
What the impact graph shows is that the cost of 
modifying the functionality represented by the 
responsibility X is significantly higher than both Y and Z. 
More precisely, a modification to responsibility X is 
estimated to take 26.6 man-days, while modifications to 
Y and Z takes below 7.2 and 6.6 man-days, respectively. 



 

X

Z

Functional Model

Y

26.6

7.2

6.6

Impact Graph

 
 

Figure 10: Mapping of responsibilities in the impact graph 

to subsystems in the functional model. The coc values for 

each responsibility have been computed. 

 
 
EXTRACTING RELATIONSHIPS  

Relationships in the impact graph express data 
dependencies among responsibilities. A relationship has 
a source and a target responsibility, i.e. a relationship is 
a directed dependency; however, in the case of 
modifiability, every relationship also has its inverse 
included, reflecting the bi-directionality of modification. 
To define a relationship one has to specify the following 
parameters: 

The mapping of relationships to external connections is 
illustrated in Figure 11.  
 

Functional Model Impact Graph

X

Z

Y

26.6

7.2

6.6

 
Figure 11: Result of this step. Blocks are mapped to 

responsibilities and connections are mapped to 

relationships. 

 
After computing the set of connections that represent the 
relationships in the functional model, the following step 
calculates the probability of change propagation (pcp) 
attribute for the relationships. 
 
COMPUTING THE PROBABILITY OF CHANGE 
PROPAGATION 

The probability of change propagation can be directly 
derived from the connectivity metric. The source and the 
target responsibilities are mapped to a source and a 
target subsystem, respectively. The probability of change 
propagation of that relationship equals the metric of 
connectivity for all connections from the source to the 
target subsystem. 
 
 



Functional Model Impact Graph

X

Z

Y

26.6

7.2

6.6

0.62

0.72

 
 
Figure 12: Computation of the probability of change 

propagation values from connectivity values of connections 

in the functional model. 

 
The impact graph in Figure 12 is complete as it contains 
the structural and quantitative information that is needed 
to evaluate quality attribute scenarios. This section has 
illustrated how the information for building the impact 
graph can be extracted from functional models. The next 
section will discuss how quality-attribute scenarios can 
be evaluated using this information. 
 
 

TOOL SUPPORT 

In order to automate the extraction of non-functional 
information from functional models, a tool that supports 
the initial responsibility mapping and automatically 
computes relationships, cost of change and probability of 
change propagation has been developed. 
 
The tool is implemented in Java as a plug-in for the 
popular development environment Eclipse developed by 
IBM. It consists of an importer for functional models in 
the Simulink notation, a graphical representation of the 
impact graph and an user interface to show details about 
the mapping between functional model and impact 
graph. Furthermore, the tool provides an intuitive way for 
specifying and evaluating quality attribute scenarios. The 
actual evaluation is done by the ArchE reasoning 
framework. Figure 13 shows the architecture of the 
setup. The user uses only the graphical user interface of 
the tool to provide her input and observe the output. The 
tool extracts all necessary information automatically from 
the functional model and communicates with ArchE to 
evaluate the scenarios. 
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Figure 13: Architecture and information flow for 

evaluating modifiability scenarios using tool support. 

 
The user begins by specifying the functional model on 
which non-functional properties are to be verified. She 
does this by choosing a Simulink model file. The tool 
then parses the block/subsystem hierarchy of the 
functional model and shows it in a tree structure. On the 
highest level of the tree structure are also the high level 
blocks and subsystems of the functional model. 
 
The user selects the subsystems that should be 
represented as responsibilities in the impact graph.By 
default, the name of the responsibility is chosen to be the 
name of the subsystem that is mapped to it but can be 
modified. Upon creating the responsibility, the tool 
automatically establishes a mapping between all blocks 
and internal connections that are contained in the chosen 
subsystems. Also, the tool immediately computes the 
cost of change (coc) for the new responsibility. In doing 
so, it implements the approach presented in previous 
sections using a settings file that stores all block 
complexities. Customizing the coc computation to suit a 
different domain is only a matter of changing the settings 
file. 
 
If there are at least two responsibilities in the impact 
graph, the tool determines the relationships and the 
probabilities of change propagation thereof. It parses the 
functional model, determines all external connections, 
and maps them to the relationship. Using a graph 
traversal algorithm, it determines all blocks that are 
affected by a relationship and then computes the pcp 
based on their complexity and the total complexity of the 
responsibility. The relationships are represented as 
arrows in the impact graph and are annotated with the 
pcp values. 
 



 
Figure 14: The user interface of the tool. The center shows 

the final impact graph of the example functional model. 

 
 
CREATING SCENARIOS 

After the modifiability model has been built, the user can 
provide the non-functional requirements that are to be 
checked on the models. These non-functional 
requirements are written in the form of quality attribute 
scenarios. The responsibilities on which the modifiability 
is to be evaluated is input to the tool. A window then 
opens up in which other scenario properties can be 
specified. The modifiability value is mandatory. 
 

 
Figure 15: The user selects one or more responsibilities 

and creates a scenario. 

 
The actual verification of the modifiability scenarios is 
conducted by ArchE. The user starts the verification 
process by clicking a button. The tool sends the impact 
graph and scenarios information to the ArchE back-end 
and awaits a response. Upon finishing the evaluation, 
ArchE sends the results back and the tool visualizes 
violations in the user interface. It displays an estimate for 
the modifiability of the current scenario, i.e. the number 
of man-days needed to implement the scenario. An icon 
indicates whether the quality attribute scenario holds. In 
the example, the scenario (the actual scenario is 
provided in the Section) is violated since the change can 
not be implemented within 7 days as specified. 
 

 
Figure 16: Visualization of the evaluation results in the 

tool. 

 
If ArchE has determined that a scenario is violated, the 
user has several options for resolving the problem. Two 
of them are lowering the complexity value of the affected 
responsibility and lowering the probability of change 
propagation. Of course, in order to achieve either one, 
refactoring is necessary, which can potentially be time 
consuming. The tool allows the user to simulate the 
refactoring by allowing the user to provide a custom 
value for both the responsibility complexities and the 
pcp’s. The impact graph and the scenarios can then be 
evaluated with the custom values.  This is a quick 
solution for finding a set up that satisfies the quality 
attribute requirements without actually implementing the 
change. 
 
VISUALIZATION 

Depending on the size of the functional model, the 
impact graph might become quite large and the diagram 
might be too crowded with responsibilities and 
relationships. A few graphical features are supposed to 
address this issue. First, to allow the engineer to focus 
on certain parts of the model, the user has the option to 
hide all relationships. She can then click on one of the 
responsibilities to show all of its incoming and outgoing 
relationships. Second, colored dots indicate the number 
of relationships of each responsibility and their probability 
of change propagation. Each relationship that is 
connected to the responsibility is represented as a dot. 
The dots function as traffic lights that indicate if the pcp 
of the respective relationship is low (green), medium 
(orange), or high (red). This highlights responsibilities 
that are affected to a large extent by other 
responsibilities and should support the user in quickly 
identifying the areas of the model that might cause 
problems when evaluating a modifiability scenario.  
 

 
Figure 17: Impact graph of the example functional model 

as produced by the tool. 

 
 



Figure 17 shows the final impact graph that was created 
based on mapping the subsystems X, Y, and Z to a 
responsibility. The relationships and all quantitative 
characteristics were computed automatically.  
 
 

CONCLUSIONS AND FUTURE WORK 

This paper has shown how non-functional modifiability 
models can be extracted from functional models given in 
Simulink.  The modifiability models can be used to 
estimate the effort needed subsequently to modify these 
models and are thus intended for use in assessing how 
“modifiable” the functional model is.  The extraction 
procedure relies on viewing subsystems in the functional 
model as components, or responsibilities (the term used 
in the paper), and connections between subsystems as 
dependencies.  The information about blocks and 
connections with subsystems are then used to quantify 
the complexity of modifying individual subsystems and 
the degree to which modifying one subsystem induces 
changes in a neighboring subsystem.  Effort data 
gleaned from creating 74 Simulink models as part of a 
body-electronic modeling effort was used to calibrate the 
procedure and validate the results. 
 
Future work will involve further fine-tuning of the 
calibrations in the extraction process, and further 
development of a combined functional / non-functional 
design-time verification workflow.  Experimenting with 
the tool on ongoing modeling efforts will also provide 
insight into the utility of non-functional design verification. 
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