
Paper Number 09AE-0202

Integrated Functional and Non-Functional Design Verification
for Embedded Software Systems

Christopher Ackermann, Arnab Ray
Fraunhofer Center for Experimental Software Engineering

Rance Cleaveland
Dept. of Computer Science, University of Maryland

Charles Shelton, Chris Martin
Robert Bosch North America, Research and Technology Center

Copyright © 2008 SAE International

ABSTRACT

This paper describes an approach to integrating
functional and non-functional design verification for
embedded control software. The method uses functional
models, which have traditionally been used in functional
verification processes, to drive non-functional verification
also. This is achieved by defining strategies for
extracting non-functional models, which contain
structural and quantitative information about non-
functional characteristics such as performance and
modifiability, from functional ones. Non-functional
verification tools may then be used on the resulting
models to check that desired non-functional properties,
such as ease of modification, are catered for in the
design. An extended example involving the analysis of a
model for modifiability is presented, as is tool support for
extracting non-functional models from functional ones.

INTRODUCTION

An emerging best-practice in embedded-software
engineering is to conduct extensive verification and
validation (V&V) during the design phases of the
development process, in order to catch errors and
inconsistencies as early as possible. The widespread
adoption of model-based development within the
automotive industry has opened up broad new
opportunities for design V&V, since the availability of
executable models in notations like Simulink® /
Stateflow®

1
 and ASCET®

2
 at design time enables

extensive testing and analysis to be undertaken before
any source code has actually been written.

In conventional model-based development workflows,
design models are first constructed and then verified
against the functional requirements (specifications of
what the system must or must not do) using simulation,
coverage-based testing, or model-checking.
Requirements that relate to the non-functional aspects of
system behavior (for instance resource usage,
timeliness, modifiability) are typically reasoned about, if
at all, in an ad-hoc qualitative manner.

The motivation for the work in this paper is to give
embedded software designers tools to conduct rigorous,
coordinated non-functional and functional design
verification and validation. The proposed approach to
achieving this goal relies on the use of functional models
in notations such as Simulink to drive both functional and
non-functional design analysis, using tools developed in
the Computer Science research community to undertake

1
 MATLAB®, Simulink® and Stateflow® are registered

trademarks of The MathWorks, Inc.
2
 ASCET® is a registered trademark of ETAS GmbH.

the latter. The core technical contribution described in
this paper is an automated framework, and associated
tools, for extracting non-functional design models from
functional ones, so that appropriate verification of non-
functional properties may be done at design time.

The rest of the paper is arranged as follows. The next
section provides background in functional and non-
functional modeling and verification, with a focus on the
specific non-functional attribute of modifiability.
Strategies for computing modifiability models from
functional ones are explained, and an example and
tooling described. The paper then concludes.

FUNCTIONAL AND NON-FUNCTIONAL
MODELING AND VERIFICATION

This section briefly reviews functional modeling and
verification and introduces the approach to non-
functional modeling and verification that is used in this
paper.

FUNCTIONAL VERIFICATION

A functional model of a system is a mathematical
specification of the operational behavior of the system. It
is typically encoded using an executable modeling
notation. A functional requirement is a statement of what
the system must or must not do, usually expressed in the
form: if a given condition holds, then the system should
respond appropriately. Functional verification consists of
checking whether the functional model satisfies the
functional requirements.

Simulink is widely used in the automotive industry for
functional modeling. In Simulink, a model consists of a
number of blocks (units of functionality) that exchange
typed data (signals) through what are known as
connections. These blocks are hierarchical; a block, in
turn, may consist of other blocks and inter-connections
between them. Blocks that contain other blocks are
typically referred to as subsystems. In Figure 1, a
Simulink diagram is shown of an abstracted body control
application function. The top subsystem (X) handles all
high level inputs and provides all outputs of the diagram.
X processes the input signals and controls the
subsystems Y and Z accordingly. Both Y and Z report on
their current state by feeding back a signal to X.

Figure 1: Example functional model given in Simulink.

Functional verification of models can be performed in a
variety of ways: through exhaustive, guided simulation
[1]; testing of the code automatically generated from the
model [2];formal methods-based model checking or
deductive reasoning [3]; and instrumentation-based
model testing [4].

NON-FUNCTIONAL VERIFICATION

While functional modeling and verification has been
studied extensively and is becoming widespread in
practice, comparatively little attention has been placed
on formally checking designs against non-functional
requirements. Such requirements typically refer to
desired structural or system-related properties, such as
performance (will the software ensure desired timing?),
security (does the software preclude unintended use?)
and modifiability (is the software easy to modify and
extend?).

In the Computer-Science research community,
technologies such as ArchE [5] have been developed for
reasoning rigorously about the non-functional aspects of
software designs. ArchE focuses on software-
architecture models as the design artifacts of interest; it
allows designers to build such models and analyze them
for different non-functional properties. In ArchE, basic
software architecture information is enriched with
quantitative information regarding the non-functional
aspect of interest (modifiability, performance, etc.). The
resulting quality-attribute model can then be analyzed to
answer questions such as likely time to perform different
modifications, expected performance, etc. Different
quality-attribute models have been built and applied
within ArchE [6], which is also the basis of Bosch’s Rapid
Architecture Prototyping Tool (RAPT). The remainder of
this section describes ArchE’s non-functional quality-

attribute models and requirements in more detail, with
particular attention paid to the modifiability quality
attribute [7] that is the focus in the remainder of the
paper.

ArchE quality-attribute models contain a mixture of
structural and quantitative data. The structural, or
architectural, information consists of the following.

• Responsibilities: A responsibility is defined to
be a unit of system functionality.

• Relationships: A relationship exists between
two responsibilities if one depends, in any way,
on the other.

For the modifiability quality attribute, a non-functional
architecture is given as an impact graph. The nodes of
the impact graph are the responsibilities and the edges
are the relationships.

The quantitative information in ArchE models associates
numbers to responsibilities and relationships. The
interpretation of these numbers depends on the quality
attribute being modeled: in the case of performance, the
numbers may represent timing information, for example.
In the modifiability model two types of quantitative
information are used.

• Cost of change (coc): Each responsibility has
an associated cost of modification (say d). Any
change request that directly affects this
responsibility is assumed to incur a cost of d
person-days.

• Probability of change propagation (pcp):
Because of the presence of relationships
between responsibilities, a responsibility B may
contribute indirectly to the total cost of
modification of responsibility A if B connected via
a relationship to A. The cost of propagation of a
change from A to B is calculated by multiplying
the probability of change propagation (p) from A
to B with the direct cost to modify B.

The cost to modify a responsibility is typically used to
label the corresponding node in the impact graph, while
the probability of change propagation labels the relevant
edge. In this way, an impact graph incorporates both
structural and quantitative information.

In ArchE, non-functional requirements, and modifiability
requirements in particular, are framed as quality-attribute
scenarios. Quality-attribute scenarios consist primarily of
a stimulus and a response – a stimulus in this case
corresponds to a request for a specific modification, and
a response describes an upper bound on the amount of
time the modification should take. It should be noted
that, in contrast with traditional functional requirements
workflows, in which requirements assumed to be known
in advance of fielding the system, non-functional
requirements arise both before design and after

deployment. In the case of modifiability, for example,
designers may have some pre-deployment expectations
about expected change requests and may conduct
modifiability analyses on the associated quality-attribute
scenarios during design time. The same modifiability
models can be used post-deployment to assess the likely
costs of change requests that arise after the system is
fielded.

 Figure 2 illustrates an impact graph derived from the
functional model shown in Figure 1. Each top-level
subsystem in this case is assumed to represent a
different responsibility, while the connections among the
subsystems reflect the relationships. Note that the
responsibility X shares relationships with both Y and Z,
but the latter two are not directly related to each other.
The quantitative information is represented as
annotations to the structural elements. The number in
each responsibility represents the cost of change in man-
days and the number at the relationships expresses the
respective probability of change propagation. Later in
this paper, automated mechanisms for computing this
information are described.

Figure 2: Impact graph capturing the structural and

quantitative information of the example functional model.

The following describes a quality-attribute scenario, or
more specifically a modifiability scenario, for adding a
new input signal to responsibility X that also indirectly
influences the signals to responsibilities Y and Z.

Stimulus: A new input shall be added to the X
subsystem that carries a Boolean value. The new input
signal represents an additional condition under which the
subsystem Y and Z shall be activated.

Response Measure: Within 7 man-days.

Note that while this scenario primarily affects
responsibility X, it also indirectly affects the
responsibilities Y and Z. X may need to send additional
signals to Y and Z based on the new input signal and
both must be able to handle the modified signals. Thus

the change is expected to propagate from the
responsibility X to the two other responsibilities Y and Z.

Given an impact graph with assigned costs of
modification and probabilities of propagation of change,
ArchE’s reasoning framework for modifiability estimates
the costs of changing one or more responsibilities. The
framework calculates for each responsibility the
probability that changing a specific responsibility will
propagate to it. The average cost for this change can
then be calculated by computing the sum of all the cost
of change times the calculated probability

EXTRACTING IMPACT GRAPHS FROM
FUNCTIONAL MODELS

The current state of non-functional reasoning
frameworks fits uneasily with existing model-based
development approaches, since the models required for
functional and quality-attribute analysis are in different
notations and must be constructed and managed
separately as a result.

The contribution of this paper lies in defining a mapping
from functional models given in Simulink to non-
functional models in the form of impact graphs that
ArchE can analyze for modifiability. Specifically, the
structural and quantitative information required to
populate the non-functional models is derived, with a
minimum of user intervention, from the functional
models. This serves the purpose of unifying the
verification activities for functional and non-functional
design attributes by integrating the two hitherto
disconnected activities into a tightly coupled one that
works on a unified model. In the workflow that this work
is intended to support, designers would construct a
single functional model and subject it to both functional
and non-functional verification using the mapping
procedure outlined in this section.

Figure 3: The user manually extracts functional and non-

functional attributes from the system and feeds it into

ArchE.

Figure 4: Our approach retrieves the functional and non

functional attributes mostly automatically from the

functional model with only little user intervention.

As noted in the previous section, impact graphs contain
two sorts of information: structural and quantitative. The
section describes how each of these types of information
is computed from functional models.

EXTRACTING STRUCTURAL INFORMATION FROM
FUNCTIONAL MODELS

The impact graph, as introduced in the last section,
consists of an underlying graph whose nodes are
responsibilities and whose edges are relationships. The
first step in extracting an impact graph from a Simulink
model is to identify these structural elements within the
Simulink model itself.

The intuition underlying this work is to view the top-level
subsystems of a given Simulink model as system
components. In the non-functional domain, the
analogues to these components are the responsibilities
that, through data dependencies, together discharge the
overall purpose of the system. Based on this intuition,
the approach in this paper maps the top-level
subsystems in the functional model to responsibilities in
the non-functional model.

Similarly, the connections between subsystems in the
functional model have relationships as their analogues in
the non-functional domain. More specifically, if
subsystem A is mapped to responsibility R and
subsystem B to responsibility S, then a relationship
exists between R and S if and only if there exists a
connection between A and B in the functional model.
Note that the directionality of the connection is not taken
into account: if A reads inputs from B or writes outputs
to B there is a connection between R and S. The reason
for this has to do with a sometimes unappreciated bi-
directionality of modifiability: if one modifies the data
type a variable, for example, then both the statements
that write to that variable as well as the ones that read
from that variable must be modified.

The conceptual mapping of the structural elements of the
functional model to the non-functional architecture is
summarized in the Table 1.

Table 1: Mapping between non-functional and functional

structural elements.

Non-Functional
Structural Elements

Corresponding
Functional Elements

Responsibilities Subsystems
Relationships Connections

EXTRACTING QUANTITATIVE INFORMATION FROM
FUNCTIONAL MODELS

The quantitative information required to populate impact
graphs is obtained from two metrics computed on the
functional model.

• Modifiability Metric: This metric captures how
expensive in terms of man-days it is to modify a
given subsystem.

• Connectivity Metric: This metric measures the
degree of connectedness between two
subsystems.

These metrics are defined below. Table 2 summarizes
the relationship between these metrics and the
associated quantities used to annotate impact graphs.

Table 2: Mapping between non-functional and functional

measures.

Impact Graph
Quantities

Corresponding Functional Model
Measures

Cost to Change a
Responsibility (coc)

Modifiability Metric

Probability of
Change

Propagation (pcp)
Connectivity Metric

Modifiability Metric

In the modifiability framework, each responsibility has an
associated cost of change (coc) number that captures
the estimated number of man-days considered
necessary to perform any kind of modification to it. The
modifiability metric provides a means of deriving these
coc numbers based from functional models.

No direct method to compute such a metric is known to
exist in research literature; the closest approach was that
followed by Vitkin et al [8], who derived structural metrics
from Simulink models for the purpose of estimating auto-
coding effort. In the following discussion, their approach
is first summarized, and then the customizations needed
to reflect an appropriate metric of modifiability are
detailed.

Autocoding Effort

The calculation of the auto-coding effort for a functional
model is based on complexity values for the blocks and
connections in the model.

A functional model consists of different types of blocks.
Each block has a set of parameters. When auto-coding a
functional model each parameter must be set by the
user, thus contributing to the total effort. This is
accounted for by assigning a complexity value to each
block (BSON) which is defined to be equal to the number
of parameters the block has. Based on the individual
complexity values for each block, the total block

complexity of a given model is the sum of all individual
block complexities.

∑
=

=

N

k

kBSONBC
1

BC = Total block complexity for a functional model.
N = Number of blocks in the functional model.
BSONk = Individual block complexity of block k.

Regarding connections, only two types of connections
are distinguished in Vitkin’s work: connections that carry
binary signals and those that carry non-binary signals.
While auto-coding binary connections is trivial, the same
task for non-binary connections requires more effort, as
it is necessary to ensure that the variables in the
generated code are precise enough and can hold large
enough values. The complexity for binary connections
are ignored (MCN=0) and all non-binary connections
have a complexity value of 1 (MCN=1). In the same
fashion as for the blocks, the total connection complexity
is the sum over all individual line complexities.

∑
=

=

L

l

lMCNCC
1

CC = Total connection complexity of functional model.
L = Number of connections in the functional model.
MCNl = Individual connection complexity of connection l.

The total auto-code complexity of the functional model is
a weighted sum of the total block complexity and the
total connection complexity. Both the block and the
connection complexities are weighted using the factors
K1 and K2, respectively.

CCKBCKMC *2*1 +=

MC = Total model complexity
K1 = Weight for total block complexity
K2 = Weight for total connection complexity

The value of the tuning coefficients K1 and K2 depend
upon the type of auto-generated code and other
organizational factors. By adjusting the coefficients, one
can take into account characteristics that are specific to
the generated code and thus increase the accuracy of
the result. Vitkin et al. did not provide any guidelines as
to how to determine these factors but mentions that
these rely on expert judgment.

Defining the Modifiability Metric

Several modifications to the original formulation of Vitkin
numbers are necessary in order to adapt them to the
domain of modifiability. One the one hand, the
complexity values for blocks and connections that
express the effort for auto-coding the respective element
do not appropriately reflect the effort for modifying it.
Further, the values for the coefficients K1 and K2, i.e. the

weights for blocks and lines, also need to be
appropriately defined for the modifiability domain. The
basic principle for calculating the modifiability metric of
modifiability however remains the same as that used by
Vitkin et.al: the modifiability measure for a subsystem is
calculated by accumulating the complexities of all blocks
and lines that are contained in it.

Block Complexity. When a new basic block is added to
a functional model, there are a number of tasks that
need to be executed. First, the engineer must decide
which basic block is to be added. This necessarily
means understanding the semantics of the block.
Second, the engineer needs to determine the part of the
model in which the block is to be inserted. Third, the
engineer needs to locate the basic block in the library,
drag it into the model and connect all its input and output
ports. Lastly, the functional model must be tested after
the block was added to it. Based on the above
observations, a complexity schema that assigns
complexity values to each block type was developed.

A list was created with 30 basic blocks that were used in
the models on which this approach was applied (for the
purposes of this work, effort data for 74 different models
constructed as part of a body-electronics modeling
project were used). Each block was then evaluated
regarding the difficulty and effort of the tasks for creating
that block. The complexity of the block was then rated on
a scale from 1 to 10 with 1 being the least complex and
10 being the most complex block (the term BCN is used
to refer to this number). This produced a schema that
rated the complexity of each block in relation to other
blocks. For instance, the “outport” block was considered
to be of little complexity and was hence assigned a
complexity of 1. The “switch-case” block requires
defining a number of Boolean expressions and was
assigned a complexity value of 5.

Table 3: List of sample blocks and the complexities that

were assigned to them.

Block BCN

Subsystem 1

Outport 1

Costant 3

Inport 1

Merge 2

Memory 3

Switch-Case 5

Action-Port 3

If 5

Connection Complexity. The connection complexity,
CCN, for every connection was then set to 1. When
creating a new connection, one does not need to spend
more effort than on non-binary connections. Thus, in
contrast to the Vitkin approach, no distinction is made
between binary and non-binary connections and an equal

complexity value is assigned to both of them. The effort
for determining which blocks and ports to connect is
already accounted for in the BSON numbers. The low
connection complexity (i.e. 1) expresses only the effort
for adding the connection.

Although these values were determined by engineers
who were already familiar with the design of functional
models, they might not reflect the situation in different
contexts or domains.For example, the numbers will be
higher for novice modelers than for experts. To adapt to
a different environment, one can simply modify this
schema according to particular needs and preferences.

Coefficients. Using the coefficients K1 and K2 provided
in the example by [8] resulted in an effort estimation that
was much higher than the experimental data collected in
the course of building the 74 models alluded to above.
Accordingly, adjustments were made: 0.02 for K1 and
0.001 for K2 produced the results that coincided most
closely with recorded effort.

Modifiability Metric Formula. In a last step, the
formula for computing the total complexity of a
subsystem must be given. The modifiability of a
subsystem is calculated by applying the formula for the
total complexity to the blocks and connections that are
contained in the respective subsystem. The metric of
modifiability for each subsystem is as follows:

MM = K1 * BMC + K2 * CMC

BMC stands for the total block complexity and CMC
stands for the total connection complexity. The block
complexity is the sum of block complexities of the blocks
contained in the subsystem. Likewise, the total
connection complexity is the sum of all connections
contained in the subsystem.

∑= kBCNBMC

 ∑= lCCNCMC

Here k ranges over the blocks in the subsystem, while l
ranges over the connections. The example below
(Figure 5) shows a high level subsystem having three
inputs and one output signal.

Figure 5: High level subsystem of a functional model.

Figure 6 shows the blocks and connections that are
contained in that high level subsystem. Each block is
annotated with its complexity (BCN) value. The
modifiability value of the high-level subsystem is

computed based on the complexity of the subsystems
and connections it contains.

2

1

3

1
3 3

4

1

1

3

Figure 6: The subsystems inside the high level subsystem

annotated with their respective complexity values.

The total block complexity is determined by multiplying
the count of each subsystem with its complexity value
and then summing over these values.

BC = 3*1 + 2*3 + 1*3 + 1*3 + 1*2 + 1*4 + 1*1
 = 22

Since each connection has a complexity value of 1, the
connection complexity is the sum over all connections.

CC = 10

The modifiability of the high level subsystem is then
computed by adding up the weighted block and
connection complexity.

MM = 0.02*22 + 0.001*10
= 0.44 + 0.01
= 0.45

Modeling the high level subsystem is estimated to
require 0.45 man-days according to our model.

Connectivity Metric

The connectivity metric assigns probability of change
propagation numbers (i.e. edge weights of the impact
graph) from design models rendered in Simulink. The
metric is based on the following intuition: the greater the
number of connections between two Simulink
subsystems, and the deeper they are, the greater the
chance that modifying one will lead to the modification of
another, i.e. the greater will be the probability that
change propagates between their corresponding
responsibilities.

The connectivity metric is based on the notion of signal
propagation. A change that affects one block propagates
to its neighbors through modifications of the signal that
travels on the connection. For instance, a change to a
subsystem (called hereafter the source) might cause a
change to the range of values, the precision, etc. of a
signal that it outputs. The signal then travels to a
neighboring subsystem (the target), which may also
require modification as a result. The reverse is also true.
A modification to a target subsystem might cause
modifications to the signal, which in turn might require
changing the source subsystem to adapt to the modified
signal.

If the target subsystem is atomic (i.e. does not contain
any other blocks), it is said to be fully impacted by the
signal, i.e. the connectivity between source and target is
1 (100%). When the target block is contains multiple
blocks, it needs to be determined to what extent these
are affected by the signal in order to estimate the total
impact to the target subsystem. The illustration in Figure
7 shows such a set-up. Subsystem a is the source
subsystem, and it is connected to the target subsystem
b, which contains blocks c, d, e, f, g, h, and i. The signal
that is output by the source subsystem a travels to
subsystems contained in b, in this case c. Since the
signal is an input to c, it also affects its output signal,
which is input to subsystems d and e. The signal
propagates in the same way to subsystems f and g.
However, the signal never reaches the subsystems h
and i.

Figure 7: Conceptual view of functional model in which

the external connection emanates from subsystem a and

impacts parts of the target subsystem b.

This intuition is used to define the degree of impact that
can propagate though a connection, i.e. its connectivity.
First, we assume that all blocks that are affected by the
connection (i.e. by the signal traveling on it) have been
identified i.e. the affected blocks. They can be
determined by transitively traversing the connections
touch an affected subsystem. In the example in Figure 7,
the affected blocks are c, d, e, f, and g.

Previously a complexity value for each subsystem type
was defined. Now the affected complexity is defined to
to be the sum of the complexities of all affected blocks.

AC = ∑
blocksaffected

i
BCN

The affected complexity in the example is the sum of the
complexities of the blocks a-f, i.e. 20.

The affected complexity expresses how much complexity
in a subsystem is affected by a connection. This impact
measure will be used subsequently instead of simply
counting the affected subsystems in order to account for
the different amount of effort that is needed to modify
subsystems of different complexities.

In the next step we compute the connectivity as the
percentage of total complexity that is affected by the
connection. The total complexity is simply the sum of the
complexity values of all the blocks it contains. For
instance, the total complexity of subsystem b is 28.

CN = AC / total subsystem complexity

In summary, to compute the connectivity of a connection,
we first determine all subsystems in the target
subsystem that are affected by it, compute the affected
complexity, and then divide it by the total subsystem
complexity.

In the example, we have determined the affected
subsystems to be a-f. The affected complexity is 20 and
the total complexity is 28. The connectivity of the
relationship in direction from a to b, therefore, 20/28 =
0.71 = 71%.

A simple extension to the approach enables it to handle
multiple connections between subsystems. The affected
subsystems are determined by identifying all subsystems
that are affected by a signal from any of the external
connections that originate in the source subsystem and
end in the target subsystem. Computing the affected
complexity and the connectivity is then done in the same
fashion as described above for single connections.

NON-FUNCTIONAL VERIFICATION – AN
EXAMPLE

This section illustrates the concepts defined in the
previous sections with the example functional model
introduced previously. The figure below (Figure 8) shows
the top-level view of the model. Each step of extracting
the structural and quantitative information from the
functional model and the way the impact graph is
updated in each step is illustrated in the following
discussion.

Figure 8: The high level view of the example model.

The steps in sequence are:

1. Extracting the responsibilities from the functional
model.

2. Calculating the cost of change from modifiability
metric.

3. Extracting the relationships from the functional
model.

4. Calculating the probability of change propagation
from the connectivity metric.

Each is discussed in turn below.

EXTRACTING RESPONSIBILITIES

The functional model of the example has three top-level
subsystems: X, Y, and Z. Each of these subsystems will
be represented in the modifiability model as
responsibilities. Figure 9 shows all the responsibilities for
the example system that are extracted from the
functional model.

X

Functional Model

Y

Z

Impact Graph

Figure 9: The responsibilities of the modifiability model on

the right are created based on the subsystems in the

functional model on the left.

COMPUTING THE COST OF CHANGE

Figure 10 shows how the modifiability values for each
responsibility in the example model are computed.

What the impact graph shows is that the cost of
modifying the functionality represented by the
responsibility X is significantly higher than both Y and Z.
More precisely, a modification to responsibility X is
estimated to take 26.6 man-days, while modifications to
Y and Z takes below 7.2 and 6.6 man-days, respectively.

X

Z

Functional Model

Y

26.6

7.2

6.6

Impact Graph

Figure 10: Mapping of responsibilities in the impact graph

to subsystems in the functional model. The coc values for

each responsibility have been computed.

EXTRACTING RELATIONSHIPS

Relationships in the impact graph express data
dependencies among responsibilities. A relationship has
a source and a target responsibility, i.e. a relationship is
a directed dependency; however, in the case of
modifiability, every relationship also has its inverse
included, reflecting the bi-directionality of modification.
To define a relationship one has to specify the following
parameters:

The mapping of relationships to external connections is
illustrated in Figure 11.

Functional Model Impact Graph

X

Z

Y

26.6

7.2

6.6

Figure 11: Result of this step. Blocks are mapped to

responsibilities and connections are mapped to

relationships.

After computing the set of connections that represent the
relationships in the functional model, the following step
calculates the probability of change propagation (pcp)
attribute for the relationships.

COMPUTING THE PROBABILITY OF CHANGE
PROPAGATION

The probability of change propagation can be directly
derived from the connectivity metric. The source and the
target responsibilities are mapped to a source and a
target subsystem, respectively. The probability of change
propagation of that relationship equals the metric of
connectivity for all connections from the source to the
target subsystem.

Functional Model Impact Graph

X

Z

Y

26.6

7.2

6.6

0.62

0.72

Figure 12: Computation of the probability of change

propagation values from connectivity values of connections

in the functional model.

The impact graph in Figure 12 is complete as it contains
the structural and quantitative information that is needed
to evaluate quality attribute scenarios. This section has
illustrated how the information for building the impact
graph can be extracted from functional models. The next
section will discuss how quality-attribute scenarios can
be evaluated using this information.

TOOL SUPPORT

In order to automate the extraction of non-functional
information from functional models, a tool that supports
the initial responsibility mapping and automatically
computes relationships, cost of change and probability of
change propagation has been developed.

The tool is implemented in Java as a plug-in for the
popular development environment Eclipse developed by
IBM. It consists of an importer for functional models in
the Simulink notation, a graphical representation of the
impact graph and an user interface to show details about
the mapping between functional model and impact
graph. Furthermore, the tool provides an intuitive way for
specifying and evaluating quality attribute scenarios. The
actual evaluation is done by the ArchE reasoning
framework. Figure 13 shows the architecture of the
setup. The user uses only the graphical user interface of
the tool to provide her input and observe the output. The
tool extracts all necessary information automatically from
the functional model and communicates with ArchE to
evaluate the scenarios.

ArchE

Tool

User

Functional Model

Parse

functional

model

Map Responsibilities

Observe impact

graph and

evaluation results

Send

impact

graph and

scenarios

Return

evaluation

result

3

9

1

2

5

Compute

impact

graph

Evaluate

Scenarios

7

6

8
Display

evaluation

results

Specify Scenario4

Figure 13: Architecture and information flow for

evaluating modifiability scenarios using tool support.

The user begins by specifying the functional model on
which non-functional properties are to be verified. She
does this by choosing a Simulink model file. The tool
then parses the block/subsystem hierarchy of the
functional model and shows it in a tree structure. On the
highest level of the tree structure are also the high level
blocks and subsystems of the functional model.

The user selects the subsystems that should be
represented as responsibilities in the impact graph.By
default, the name of the responsibility is chosen to be the
name of the subsystem that is mapped to it but can be
modified. Upon creating the responsibility, the tool
automatically establishes a mapping between all blocks
and internal connections that are contained in the chosen
subsystems. Also, the tool immediately computes the
cost of change (coc) for the new responsibility. In doing
so, it implements the approach presented in previous
sections using a settings file that stores all block
complexities. Customizing the coc computation to suit a
different domain is only a matter of changing the settings
file.

If there are at least two responsibilities in the impact
graph, the tool determines the relationships and the
probabilities of change propagation thereof. It parses the
functional model, determines all external connections,
and maps them to the relationship. Using a graph
traversal algorithm, it determines all blocks that are
affected by a relationship and then computes the pcp
based on their complexity and the total complexity of the
responsibility. The relationships are represented as
arrows in the impact graph and are annotated with the
pcp values.

Figure 14: The user interface of the tool. The center shows

the final impact graph of the example functional model.

CREATING SCENARIOS

After the modifiability model has been built, the user can
provide the non-functional requirements that are to be
checked on the models. These non-functional
requirements are written in the form of quality attribute
scenarios. The responsibilities on which the modifiability
is to be evaluated is input to the tool. A window then
opens up in which other scenario properties can be
specified. The modifiability value is mandatory.

Figure 15: The user selects one or more responsibilities

and creates a scenario.

The actual verification of the modifiability scenarios is
conducted by ArchE. The user starts the verification
process by clicking a button. The tool sends the impact
graph and scenarios information to the ArchE back-end
and awaits a response. Upon finishing the evaluation,
ArchE sends the results back and the tool visualizes
violations in the user interface. It displays an estimate for
the modifiability of the current scenario, i.e. the number
of man-days needed to implement the scenario. An icon
indicates whether the quality attribute scenario holds. In
the example, the scenario (the actual scenario is
provided in the Section) is violated since the change can
not be implemented within 7 days as specified.

Figure 16: Visualization of the evaluation results in the

tool.

If ArchE has determined that a scenario is violated, the
user has several options for resolving the problem. Two
of them are lowering the complexity value of the affected
responsibility and lowering the probability of change
propagation. Of course, in order to achieve either one,
refactoring is necessary, which can potentially be time
consuming. The tool allows the user to simulate the
refactoring by allowing the user to provide a custom
value for both the responsibility complexities and the
pcp’s. The impact graph and the scenarios can then be
evaluated with the custom values. This is a quick
solution for finding a set up that satisfies the quality
attribute requirements without actually implementing the
change.

VISUALIZATION

Depending on the size of the functional model, the
impact graph might become quite large and the diagram
might be too crowded with responsibilities and
relationships. A few graphical features are supposed to
address this issue. First, to allow the engineer to focus
on certain parts of the model, the user has the option to
hide all relationships. She can then click on one of the
responsibilities to show all of its incoming and outgoing
relationships. Second, colored dots indicate the number
of relationships of each responsibility and their probability
of change propagation. Each relationship that is
connected to the responsibility is represented as a dot.
The dots function as traffic lights that indicate if the pcp
of the respective relationship is low (green), medium
(orange), or high (red). This highlights responsibilities
that are affected to a large extent by other
responsibilities and should support the user in quickly
identifying the areas of the model that might cause
problems when evaluating a modifiability scenario.

Figure 17: Impact graph of the example functional model

as produced by the tool.

Figure 17 shows the final impact graph that was created
based on mapping the subsystems X, Y, and Z to a
responsibility. The relationships and all quantitative
characteristics were computed automatically.

CONCLUSIONS AND FUTURE WORK

This paper has shown how non-functional modifiability
models can be extracted from functional models given in
Simulink. The modifiability models can be used to
estimate the effort needed subsequently to modify these
models and are thus intended for use in assessing how
“modifiable” the functional model is. The extraction
procedure relies on viewing subsystems in the functional
model as components, or responsibilities (the term used
in the paper), and connections between subsystems as
dependencies. The information about blocks and
connections with subsystems are then used to quantify
the complexity of modifying individual subsystems and
the degree to which modifying one subsystem induces
changes in a neighboring subsystem. Effort data
gleaned from creating 74 Simulink models as part of a
body-electronic modeling effort was used to calibrate the
procedure and validate the results.

Future work will involve further fine-tuning of the
calibrations in the extraction process, and further
development of a combined functional / non-functional
design-time verification workflow. Experimenting with
the tool on ongoing modeling efforts will also provide
insight into the utility of non-functional design verification.

REFERENCES

1. Bakshi, A. MILAN: A Model based integrated simulation

framework for design of embedded systems. ACM

SIGPLAN 2001 Workshop on Languages, Compilers, and

Tools for Embedded Systems.

2. Takahashi, J. and Kakuda, Y. 2002. Extended Model-

Based Testing toward High Code Coverage Rate.

Proceedings of the 7th international Conference on

Software Quality (June 09 - 13, 2002). J. Kontio and R.

Conradi, Eds. Lecture Notes In Computer Science, vol.

2349. Springer-Verlag, London, 310-320.

3. Clarke E. Grumberg O, Pereld D. Model Checking. The

MIT Press.

4. Ackermann C., Ray A., Cleaveland R., Heit J., Shelton C.,

Martin C.. Model-Based Design Verification: A Monitor

Based Approach. Society of Automotive Engineers (SAE)

World Congress 2008, Detroit, USA.

5. Bachmann, Felix; Bass, Len; & Klein, Mark. Preliminary

Design of ArchE: A Software Architecture Design

Assistant (CMU/SEI-2003-TR-021).

6. Bass, L., Ivers, J., Klein, M., Merson, P., and Wallnau, K.

2005. Encapsulating Quality Attribute Knowledge.

Proceedings of the 5th Working IEEE/IFIP Conference on

Software Architecture (November 06 - 10, 2005).

7. C. Shelton and C. Martin, “Using Models to Improve the

Availability of Automotive Software Architectures”, ICSE

Workshops SEAS '07, IEEE, Location, 20-26 May 2007,

pp. 9-19.

8. Lev Vitkin, Susan Dong, Rick Searcey and Manjunath BC.

“Effort Estimation in Model-Based Software

Development”, Society for Automotive Engineers World

Congress 2006.

9. Bachmann, Felix; Bass, Len; Klein, Mark; & Shelton,

Charles. “Designing Software Architectures to Achieve

Quality Attribute Requirements” (153-165). IEEE

Proceedings on Software, August 2005.

