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1 Introduction
There has been a lot of work recently on the topic of “Deterministic Transaction Processing” that
assumes that the read and write sets of transactions are known in advance before the execution
of the transaction. The knowledge of the read and write sets of transactions enables scheduling
the transactions in some global order efficiently while being able to guarantee serializability while
achieving high concurrency. The advance knowledge of read and write sets of transactions allows
to perform at least the following in an efficient manner:

• Concurrency Control: We can design a concurrency control by scheduling a batch of trans-
actions by using the knowledge of the read and write sets of the transactions for efficient
execution of transactions. This deterministic scheduling and execution of transactions po-
tentially introduces a possibility of obtaining higher concurrency when compared to executing
the transactions under existing concurrency protocols or its variations like Two-Phase locking
(2PL), OCC and MVCC that could suffer from overheads due to non-deterministic schedul-
ing.

• Efficient Replay: We can design a framework for replaying transactions based on the trans-
action that made the unauthorized change; we need to undo the change by replaying the
transactions. We can perform this task by constructing a dependency graph that uses the
knowledge of the read and write sets of the transactions. This is efficient when compared to
the trivial way to replay transactions that executes all the transactions irrespective of the
transaction that performed the unauthorized update.

In this work, we address the second problem which is designing and implementing an efficient
framework to replay transactions. In the next section, we explain the problem in detail.

2 Problem
Let us consider that n transactions T1,T2,...,Tn have executed on d items x0, x1, x2,...,xd−1. For
2 transactions Ta and Tb, Ta commits before Tb iff a < b. Further, each transaction reads r and
writes w items ((r + w) << d). Let us denote the read and write sets of a transaction T by RT

and WT respectively. At a given point in time, let us say that we realize that Tk (k ≤ n) makes
unauthorized update(s) and we want to undo the change. We can perform this in two ways:

• Case 1: We can thrash the entire database and replay tranasactions Tk, Tk+1, ..., Tn to undo
the unauthorized update performed by Tk.

• Case 2: A smarter and more efficient option to undo this change would be to replay a subset
of transactions that read or wrote the items written by Tk i.e replay those transactions among
Tk, Tk+1, ..., Tn that directly or indirectly depend on the write set of Tk.

We illustrate the difference between the above two cases by considering the following scenarios.

1. Unauthorized Update on 1 item by a transaction: Let us consider that 6 transactions
T1, T2, ..T6 executed, where each transaction performs reads and writes to items. For sim-
plicity, let us assume that each transaction writes every item that it reads (RWM). We can
construct a dependency graph using the knowledge of read and write sets of these transac-
tions. For now, let us assume that we are given the dependency graph for 6 transactions as
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shown in Figure 1; we explain how to construct the dependency graph later. For example,
we can see that T1 reads and updates x1 and x10 (Figure 1).

Figure 1: T1 makes unauthorized update on x1

Let us consider that an unauthorized transaction T1 wrongly updated x1 that might corre-
spond to the number of products of item x1 in an inventory. We need to undo this wrong
update of x1. An trivial way to undo this change is to replay all transactions starting from
T1 i.e. T1, T2, T3, T4, T5, T6 because all these transactions were executed after T1.

However, by specifically considering the dependency graph and the fact that T1 wrongly up-
dated x1, we can replay more efficiently. From Figure 1, note that only transactions T2, T4, T5

are affected by the unauthorized update made by T1 on x1. In other words, transactions T3

and T6 are unaffected by this wrong update made by T1. Hence, we could replay efficiently
by replaying the transactions T1, T2, T4, T5 in the same order as they were executed, thereby
pruning the unaffected branch T3 and T6.

2. Unauthorized Update on Complete Write Set (W) by a transaction:

Let us consider that 6 transactions T1, T2, ..T6 executed each one reading 3 items and writing 2
items. The read and write sets are denoted by R andW respectively in Figure 2. We construct
a dependency graph using the knowledge of read and write sets of these transactions as shown
in Figure 2. We can see that T1 reads x3,x6,x17 and makes unauthorized updates on x13 and
x15.

In order to undo this unauthorized update made by T1 on W, like we explained before, one
way to undo this change is by replaying all transactions that executed after T1 i.e. T1 to T6

in the same order. However, by using the write sets of T1 and the dependency graph, we can
replay transactions efficiently.
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Figure 2: T1 makes unauthorized update on W = {x13,x15}

From the dependency graph shown in Figure 2, we can observe that only transactions T2,
T5 and T6 are affected by the unauthorized update made by transaction T1 on its write set
x13 and x15. Further, T3 and T4 are unaffected by the unauthorized update made by T1.
Hence, we efficiently replay transactions T1, T2, T5 and T6 in the same order to undo this
unauthorized update and avoid replaying T3 and T4.

From the above two scenarios, we observe that using the knowledge of the read and write sets
of all the transactions, we could construct the dependency graph which can be used to efficiently
replay only the relevant transactions that are affected by the unauthorized update. We explain
the high-level overview of transaction execution and replay pipeline next followed by dependency
graph construction in Section 4.

3 Transaction Execution and Replay Pipeline
We present the high-level overview pipeline involving transaction execution and replay in Algo-
rithm 1.

Algorithm 1 Transactions Execution and Replay Pipeline
1: procedure ReplayPipeline(n, unauth, cmode, rmode) . n :no. of txns, unauth:id of

unauthorized txn, cmode: Concurrency Control Mode, rmode: Replay Mode
2: for i in 1 to n-1 do
3: ExecuteTxn(Ti,cmode)
4: if rmode == COMPLETE then . Complete Replay
5: CompleteReplay(T,unauth,n)
6: else . Smart Replay
7: G = Construct-Dependency-Graph(T,unauth,n) . G:Dependency Graph
8: SmartReplay(G,T,unauth,n)

The first phase in the pipeline consists of executing the n transactions in the database using the
concurrency control protocol cmode. cmode could be either SERIAL, 2PL, OCC, MVCC or any

3



variant. However, in this work, we do not focus on designing a concurrency protocol; our primary
focus is on the second phase (line 4 onwards in Algorithm 1) that involves replaying transactions.

After the transactions have executed, and we realize that Tunauth (unauth < n) has made an
unauthorized update, we need to undo this unauthorized update. The replay mode, given by, rmode
could be either COMPLETE or SMART as illustrated earlier. In the case of COMPLETE replay
mode, we replay all the transactions starting from Tunauth till Tn−1. However, if rmode is SMART,
we construct the dependency graph G of transactions using the Construct-Dependency-Graph
module which we explain next. We use G to efficiently replay relevant (affected) transactions and
prune irrelevant (unaffected) transactions. Note that the technique followeed to replay transactions
is independent of the concurrency control protocol followed to execute the transactions. However,
the concurrency control protocol decides the commit order and the timestamps assigned to the
transactions.

We should take care to ensure that during transaction replay, each transaction reads the correct
values before performing the writes to undo an unauthorized update. We accomplish this by storing
the read and write buffers for each transaction as it executes (before replay). Further, for each
item in the in-memory key-value, we also maintain the id of the transaction that made the latest
update to that item.

Let us consider a scenario where we have 100 transactions T1, T2,...,T100. Further, let T1 reads
and makes a wrong update on x1, T2 reads and updates x1 and T100 reads and updates x1. There
arises two cases during replay while each transaction either uses the read value from its local read
buffer or performs a read from the in-memory key-value store as explained.

1. Using the value from local read buffer: x1 is last updated by T100 during execution phase.
While replay, T1 consists of the value of x1 in its local read buffer (when T1 was executed). T1

has two choices, use the value of x1 from its read buffer or perform a read from the in-memory
key-value store for x1. We observe that x1 was last updated by T100 and timestamp(T100) >
timestamp(T1). Hence, T1 has the correct read value for x1 in its local buffer, which it uses
while replaying.

2. Reading the value from in-memory key-value store and overwriting local read buffer: Consider
the case of T2 assuming that T1 has already replayed. T2 has two choices, use the value of
x1 from its read buffer or perform a read from the in-memory key-value store for x1. Af-
ter T1 has replayed, we observe that x1 was last updated by T1. Further, timestamp(T1)
< timestamp(T2) according to the commit order. Hence, T2 reads x1 from the in-memory
key-value store and overwrites its local read buffer after which it performs its replay.

By maintaining the local read and write buffers along with the transaction id that made the
latest update to each transaction, we could ensure that each transaction performs the correct read
while replay. However, we could use a more general form of versioning that maintains versions of
each item to accomplish the same. We discuss how to construct the dependency graph in the next
section.

4 Dependency Graph
Dependency graph G is a graph of transactions where each node corresponds to a transaction and
an edge corresponds to dependency between the transactions. We present some properties of the
dependency graph that are invariant during graph construction for the sake of correctness:

• An edge can exist between two nodes (transactions) Ti and Tj iff i < j. We want to ensure
that transactions are replayed in the same order they were earlier executed.

• For i < j, if Tj connects to Ti (Ti =⇒ Tj), Tj is not connected to any ancestor of Ti.
Ancestors of Ti are the transactions that Ti indirectly depends on. We follow this to ensure
efficiency and correctness of the SmartReplay algorithm which we explain later.

• For i < j, then Tj connects to Ti if either:

– RTj overlaps with WTi (WR conflict) where, RT and WT corresponds to read and write
sets of T respectively or

– WTj
overlaps with WTi

(WW conflict).
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We present the algorithm to construct the dependency graph that satisfy the above invariants in
Algorithm 2.

Algorithm 2 Dependency Graph Construction
1: procedure Construct-Dependency-Graph(T, unauth, n) . n :no. of txns, unauth:id of

unauthorized txn
2: for j in unauth to (n-1) do
3: add node Tj to G
4: for i in (n-1) to unauth do
5: if Tj not connected to any descendant of Ti then
6: if (RTj

∩WTi
6= ∅ or WTj

∩WTi
6= ∅) then

7: add edge from Ti to Tj to G

As we need to replay the transactions starting from Tunauth, we construct the dependency graph
G having nodes from Tunauth to Tn−1. We add every transaction node starting from Tunauth to G.
For optimality, while adding a transaction Tj to the graph, we consider all potential transactions
Ti’s for adding an edge in the reverse order. The reason for this is when Tj connects to Ti with an
edge, we can skip all other ancestors of Ti for potential edge consideration.

When we observe such a Ti whose descendant is not linked to Tj , we compute the overlap
between the RTj and WTi . This corresponds to Write-Read (WR) conflict between Ti and Tj .
Similarly, an edge could be established from Ti to Tj when there arises a Write-Write (WW)
conflict i.e. overlap between WTj

and WTi
. In the next section, we explain how the transactions

are replayed using both COMPLETE and SMART replay technique. The SmartReplay technique
uses the dependency graph for smart replay.

5 Transactions Replay
In the section, we discuss both the replay techniques.

5.1 Complete Replay
We describe the algorithm we follow to completely replay all transactions in Algorithm 3.

Algorithm 3 Complete Replay
1: procedure CompleteReplay(T, unauth, n) . n :no. of txns, unauth:id of unauthorized txn
2: for i in unauth to (n-1) do
3: ExecuteTxn(Ti,SERIAL)

From the algorithm, we observe that in order to undo any change made by Tunauth, we replay
all transactions starting from Tunauth to Tn−1.

5.2 Smart Replay
We describe the algorithm we follow to completely smartly replay transactions in Algorithm 4.
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Algorithm 4 Smart Replay
1: procedure SmartReplay(T, unauth, n) . n :no. of txns, unauth:id of unauthorized txn
2: visited = ∅
3: batch = ∅
4: visited[Tunauth]=true
5: batch.push_back(Tunauth)
6: while batch not empty do
7: T = batch.pop_front()
8: ExecuteTxn(T)
9: for S in children[T] do

10: if (!visited[S]) then
11: visited[S] = true
12: batch.push_back(S)

From the algorithm, we observe that in order to undo any change made by Tunauth, we replay
only the transactions starting from Tunauth that are relevant (reachable) from Tunauth using BFS
algorithm. This ensures that transactions that are irrelavant (unreachable) by the unauthorized
update are not replayed. Connecting a node to the least descedant ancestor during graph construc-
tion ensures that we do not execute (explore) a child transaction before we execute its ancestors.
We conduct experiments that compare the performance of CompleteReplay and SmartReplay al-
gorithm.

6 Experimental Evaluation
For performance comparisons we compare our prototype implementation of CompleteReplay and
SmartReplay on the YCSB Benchmark. For the experiments, we use a single table. We run 1000
transactions. The read and writesets of the transactions are generated as uniform distribution. All
the experiments were performed on junkfood (junkfood.cs.umd.edu) machine. The code can be
found at Project Github Repository.We use two kind of workloads:

1. 10 Read-Modify-Write (10RMW): In this workload, each transaction reads 10 items and
writes the same 10 items that it previously read. We ensure the that the read and write sets
of each transaction is unique.

2. 2RMW-8R: In this workload, each transaction performs 2RMWs and 8R (reads). Like earlier,
we ensure that the read and write sets of each transaction is unique.

For both the workloads, we report the results by making the first transaction do the unauthorized
update to its complete write set. We vary the running time of transactions as 1ms and 10ms that
corresponds to short and long transactions respectively. Further, we run each experiment 10 times
and report the average of the 10 runs when we report the results. As mentioned earlier, the perfor-
mance results are independent of the Concurrency Control protocol that executed the transactions.
For shorthand notations, from hereafter, let CR, GC, SR, GC+SR correspond to CompleteReplay,
Graph Construction, SmartReplay, GraphConstruction+SmartReplay respectively.

6.1 10RMW Workload
As explained earlier, in 10RMW Workload, each transaction reads 10 items and updates the 10
items that it had read. We report the performance of CompleteReplay and SmartReplay under
both low and high contention for this workload in Table 1.
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Txn Length Parameter
Low

Contention
(20000 records)

High
Contention

(5000 records)

Short Txn
(1ms)

CR 1.0267 1.0276
GC 0.072 0.845
SR 0.056 0.783

GC+SR 0.128 1.628
Relevant txns for CR 1000 1000
Relevant txns for SR 54 758

Long Txn
(10ms)

CR 10.176 10.126
GC 0.072 0.831
SR 0.55 7.632

GC+SR 0.622 8.463
Relevant txns for CR 1000 1000
Relevant txns for SR 51 775

Table 1: Running Time (sec) on 10RMW Workload

From Table 1, let us first discuss the case of low contention. We observe that for both shorter
and longer transactions, GC+SR performs approximately 8 to 16 times faster when compared to
CR for shorter and longer transactions respectively. Further, ignoring GC, SR performs 18 times
faster when compared to CR for both shorter and longer transactions respectively. The main
reason for this is CR needs to replay all the 1000 transactions, while SR replays around 50 relevant
transactions thereby pruning upto 950 transactions.

For higher contention, in the case of shorter transactions, GC takes more time compared to the
case of lower contention. Further, for short transactions, GC+SR takes more time when compared
to CR; SR is much faster than CR because it avoids replaying around 250 transactions that CR
runs in addition. We observe that during the case of high contention, we pay an additional overhead
for GC.

6.2 2RMW-8R Workload
As explained earlier, in 2RMW-8R Workload, each transaction performs 2RMSs and reads 8 items.
We report the performance of CR and SR under both low and high contention for this workload
in Table 2.

Txn Length Parameter
Low

Contention
(10000 records)

High
Contention

(2500 records)

Short Txn
(1ms)

CR 1.016 1.015
GC 0.032 0.16
SR 0.008 0.189

GC+SR 0.040 0.349
Relevant txns for CR 1000 1000
Relevant txns for SR 8 186

Long Txn
(10ms)

CR 10.102 10.129
GC 0.032 0.161
SR 0.081 1.865

GC+SR 0.113 2.026
Relevant txns for CR 1000 1000
Relevant txns for SR 8 181

Table 2: Running Time (sec) on 2RMW-8R Workload

From Table 2, let us first discuss the case of low contention. We observe that for both shorter
and longer transactions, GC+SR performs approximately 3 to 25 times faster when compared to
CR. The primary reason for superior performance of GC+SR is that CR needs to replay all the 1000
transactions, while SR replays around 10 relevant transactions there by avoiding to replay more
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than 990 transactions. For higher contention, in the case of both shorter and longer transactions,
we observe a pattern similar to the case of low contention.

6.3 Varying Graph Construction for 10RMW Workload
From the previous experiments on 10RMW and 2RMW-8R workloads, we observe some interesting
points.

• For high contention 10RM Workload involving short transactions, we observe that SR+GC
incurs 1.5 times more running time than CR.

• For high contention 10RMW workloads, we observe that much more relevant transactions
using SR when compared to low contention workloads. We expect dependency graphs to
have longer chains for high contention workloads as opposed to low contention workloads.
We end up paying more for GC.

However, for the case of 2RWM-8R workload, the overhead of GC is much lesser. Hence, for
the rest of section, we perform experiments that involve only 10RMW workload. Unless mentioned
specifically, all the discussion in this section, hereafter pertains to 10RMW workload.

6.3.1 Motivation

For high contention 10RMW workload,

• We expect dependency graphs to form longer chains.

• For shorter transactions, GC might incur higher overhead due to the contention. GC+SR
might be much more than CR.

• The number of relevant transactions for SR much higher. Approximately 70-80% of CR.

Keeping the above points in mind, we observe a trade-off between SR and GC. If we build
the dependency graph using all transactions, we incur more overhead for GC and reduce running
time of SR. If we build the dependency graph using a few transactions, we incur lesser overhead
for GC and pay additional overhead for SR. However, in the case of high contention 10RMW
workloads, we observe dependency graphs having longer chains. Hence, we anyway need to replay
more transactions. This motivates us to think of a possibility where we could trade-off by creating
the dependency graph by using x% of the transactions and replaying the rest (1−x)% transactions
serially.

We conduct experiments in the case of 10RMW workload by varying the graph construction
by creating the dependency graph using x% of the transactions and replaying the rest (1 − x)%
transactions serially where 0 ≤ x ≤ 100. When x is 0, we replay 100% of the transactions where in
it is CR. For smaller values of x (<10) we expect trends similar to CR. For larger values of x, we
expect to pay higher price for GC in the case of high-contention short transactions. We present
the results next under high contention and low contention workloads separately.

6.3.2 High Contention

The results pertaining to varying graph construction for high contention workloads is presented in
Figure 3 and 4. Figure 3 presents the specific case involving short transactions. As we increase
the number of transactions that are used for graph construction, we observe that time to construct
the graph (GC) increases. GC cost is maximum at 100% when all the transactions are used for
graph construction. However, at 100%, we observe that GC+SR is much higher than CR. This is
what we expect for high contention workloads. However, when 20-40% of transactions are used to
create the graph and rest 60-80% are completely replayed, we observe that GC+SR is more efficient
when compared to CR. We observe that the difference between GC+SR and CR is maximum when
20-40% of transactions are used for GC.
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Figure 3: High Contention : Elapsed Time vs % Graph Constructed

Figure 4 presents the result having long transactions. We observe a similar trend although the
severity is much lesser due to longer transactions. However, we can observe that when 40-60% are
used for graph construction, it is the optimal point of trade-off between GC and SR. We observe
that the difference between GC+SR and CR is maximum when 40-60% of the transactions are
used in GC.

Figure 4: High Contention : Elapsed Time vs % Graph Constructed
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6.3.3 Low Contention

The results pertaining to varying graph construction for low contention workloads is presented in
Figure 5 and 6. From the results, we observe that in the case of low contention workload, for both
short and long transactions, it is optimal to create the graph using all the transactions and replay
efficiently using SR. We observe that the difference between GC+SR and CR is maximum at 100%.

Figure 5: Low Contention : Elapsed Time vs % Graph Constructed

Figure 6: Low Contention : Elapsed Time vs % Graph Constructed
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7 Summary
We present a framework that allows efficiently replaying transactions by constructing the depen-
dency graph. At a very high level, the key points of the work are as follows:

• SmartReplay is much efficient when compared to CompleteReplay as it replays relevant
transactions and avoids replaying irrelevant transactions.

• Graph construction overhead is minimum for low contention workloads and maximum for
high contention workloads.

• In the case of low contention workloads, we might construct the dependency graph by using
all the transactions. This saves a lot during SmartReplay. GC+SR−CR is maximum when
all the transactions are used for graph construction.

• In the case of high contention workloads, we might construct dependency graph using the
first 20−40% of transactions and replay the rest 60−80% of transactions due to the expected
longer chains in dependency graph for high contention workloads. GC+SR−CR is maximum
when the first 20− 40% of transactions are used for graph construction.

8 Future Work
We presented a simple framework that enables replaying transactions efficiently. However we could
expand on the following points in the future.

• Perform Parallel Dependency Graph construction: We could create dependency graphs in
batches and connect them. High overhead is incurred for creating a larger dependency graph
having n transactions rather than having 10 dependency graphs having n

10 transactions each.
This gives a perfect setting for possible parallelism.

• Perform Parallel SmartReplay Algorithm: We could create a concurrency protocol that en-
ables SmartReplay in parallel wherein each of the children could be replayed in parallel.
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