
A FRACTIONAL DIFFERENCING METHOD FOR FILE SYSTEM
DATA STORAGE AND TRANSMISSION

VASILE GABURICI

Abstract. We introduce a method for computing the difference between a

pattern string (data block or file) and a much larger, iteratively updated set of
strings (an entire file system or cache thereof), while only examining a small

fraction of this set.

We show how our method generalizes existing algorithms used in a unique
block storage system (venti), and a low bandwidth network file system (LBFS),

and a differencing incremental backup system (by Burns & Long). We also

provide improved algorithms for all these systems, and introduce a new file
system (wonkyfs) that can offer better compression than building on top of an

improved block systemi. Finally, we combine the compression and bandwidth
reduction improvements in the case of a versioning client-server wide area file

system (motefs).

1. The Basic Method

1.1. Description. Let Φ = T0 ⊂ T1 ⊂ . . . ⊂ Tn ⊂ . . . be a sequence of string sets,
such that ∀i ∈ Z∗, Ti+1 = Ti ∪ {Pi}, and let Ti = P0 . . . Pi−1 be a string obtained
by concatenating all the strings in Ti in a predetermined order. Our goal is to
compute at each stage i an approximation for a shortest1 edit path (SEP) between
Pi and Ti while reading only a small fraction of the strings in Ti. Informally, the
sequence T〉 models the data in WORM (Write Once Read Many) file systems. At
each stage we extend the file system data Ti by adding a new chunk of data Pi,
which, depending on the file system, may be a data block, the data of a single file,
or even the data of a file set. E.g., in a multisession CD-R each session corresponds
to a stage, and Pi is the data from all the files added in session i. The goal is to
write the new chunk of data Pi as a difference with respect to the existing data Ti,
but without having to read the entire Ti which may be very large.

In classic approximate string matching problems (k-difference, ε-matching) a
special class of algorithms addresses the problem of finding all substrings of a text
string T that approximately match a pattern string P , whith the practical con-
straint that T is much longer than P . The basic idea of the exclusion method
[Gus97] (called filtration in the more recent [NR02]) for these classic problems is to
somehow efficiently exclude large regions of T , so the more expensive approximate
matching algorithms only have to be performed on some surviving regions of T .

Building on the exclusion method idea, our fractional differencing method (i)
first excludes a large fraction of the strings from Ti based on an exclusion criteria,
then (ii) extends the surviving strings according to an extention algorithm, and (iii)
selects the most promising survivors based on a selection criteria. Depending on the

1At this point we defer a precise definition for the weights in the edit graph. To define then
precisely we need to take into account the exact encoding for the edit path.

1



2 VASILE GABURICI

exension algorithm used at (iii), it is possible that a good enough approximation for
the SEP is readily available after (iii). If this is not the case, we may add another
step (iv) in which the strings from Ti identified at (iii) are used to determine the SEP
approximation using a more precise (perhaps even optimal) differencing algorithm.

Some classic algorithms for inexact string matching based on the exclusion
method (e.g. Myers ε-matching algorithm [Mye94]) build an indexing structure
S for the large string T. This approach is especially effective if repeated matches
of various pattern strings Pi are done on the same database string T . E.g., Myers
algorithm runs in sublinear time wrt. to the length of T . As formulated herein,
our file system problem differs from this traditional inexact string match against
a database in one simple but important aspect: after every matching query, the
pattern string is added to the database. This observation leads to the introduction
of a sequence of indexing structures Si, that facilitates the crucial step (i) in our
method. Because Si grows as Ti grows (although it may grow slower), we would
like to construct Si+1 from Si and Pi while examining only a fraction of Si. This
is the last step (v) in our method. Fortunately, for most index structures (e.g.
hashtables, suffix trees), this insertion is a simple problem, and has running times
that are sublinear or may not even depend on the size of Si, thus satisfying our
requirement.

1.2. Applications.

1.2.1. Venti and venti+. Venti [QD02] is a system that allows file data to be stored
as a tree of variable size unique blocks. Blocks are identfied, and their uniqueness is
enforced by computing a hash function on block data. Leaf blocks contain actual file
data, while the blocks at other levels describe sequences of blocks by enumerating
block identifiers. The venti system itself does not deal with splitting files into
blocks, but the suggested application usage is to determine anchors that are resistent
to insertions and deletions using the technique initially employed in the tool sif
[Man94].

Venti may be seen as an application of our method in the following way: the
block hashtable is the index structure Si, and Pi is a block to be written. At
step (i) if the hash of Pi is found in Si then the block allready stored in for that
hash value is the survivor, otherwise there are no survivors. We then skip to step
(iv) where in the case of a survivor, we do nothing and assume based on the low
proability of hash collision that our differencing has found an exact match. Step
(v) obviously consists of adding the hash of the new block to the hashtable.

There are two ways to extend venti, one which preserves the existing architecture
and the current choice for Pi, which we shall present first, and another less direct
approach that assumes integration with a filesystem sitting on top of venti. Because
the second approach is not really a block storage system anymore we shall call it
wonkyfs2. The purpose of this discussion is to illustrate simple applications of the
method, and also to emphasize the importance of an appropriate choice for Pi.

The direct approach for building a venti+ is to go beyond the dichotomous
differencing by identifying more survivors than the exact identifying hash match.
In simple terms, we need to identify similar blocks. A simple index structure
that allows that is a hashtable that, in the true spirit of [Man94], indexes block
subregions. Because this second hashtable is only used for finding similar blocks, its

2WORM chunky file system



A FRACTIONAL DIFFERENCING METHOD FOR FILE SYSTEM DATA STORAGE AND TRANSMISSION3

hash function may output shorter fingerprints, and be less collision resistant. This
is proabably a good indea also because the number of block subregions is higher
than the number of blocks, so storage space for this hashtable may be of concern.
Having less collision resistance on this secondary hash function does not threaten
data integrity, it merely increses the probability that a surviving region may not
actually be similar to Pi. Thus, the new indexing structure S′

i is comprised of
two hashtables, the original one Si, which allows identity to be estabilished with
high probabillity, and the new subregion indexing hashtable Ri which maps block
subregion hashes to the block byte ranges they belong to.

We need to allow files to make use of partial venti+ blocks. To do this, we extend
the intermediate “inode” blocks to allow them to contain block ranges. While more
complex solutions are possible, for the purpose of simplicty we limit the use of block
byte ranges to block identifiers that point to data blocks. So an intermediate block
contains a list of blocks, identifiers, and, for those blocks that contain actual data,
they also contain a block byte range. In order to benefit from these partial blocks,
the read interface for venti+ would have to be changed to allow block byte ranges to
be requested. Given that the maximum venti block size is 52Kb, and that that the
system uses hard drives which normally have 512 byte blocks, reading only partial
venti+ blocks is worthwhile.

Writing a new block Pi proceeds as follows: (i) process Pi calculating hashes for
use in Ri, and the identifying hash. If the identifying block hash is found in Si,
there is only one survivor, and we proceed, as in the regular venti, to step (iv-a).
If the identifying hash in not in Si, lookup in Ri all block regions that match, and
asseble the list of survivors as the blocks which those regions map to in Ri. At step
(ii) we use a simple linear extension algorithm to extend these matching subregions.
At (iii) we select for each subregion of Pi the longest corresponding subregion in
the surviving set if such a region exists and proceed to step (iv-b). Step (iv-a) is
identical to the original step (iv) in venti. At step (iv-b) we create new venti+

blocks for the regions of Pi that do not have a matched survivor. We write an
intermediate block (or tree of blocks if only one block does not have enogh space)
that contains identifying hashes and byte ranges for the surviving region blocks,
and the identfiers for the new blocks. Finally, at step (v) we add the appropriate
entries to S′

i.

1.2.2. WonkyFS. Venti+ suffers from two flaws when a file system is the layer above
it: (1) it does not use the fact that blocks belong to files, and (2) the hashtable Si

is redundant for similarity finding purposes. The strict layering imposed by venti,
transforms a file composed of a linear succession of n blocks into a set of n blocks.
If one of these blocks is found to be identical to a block already stored, chances are
that other blocks in the file, perhaps adjacent ones have some partially matching
peers already stored. But, we have to discover this information the hard way, using
the hashtable Ri for each block, and some blocks may actually fail to find any
similar peers, despide having a non-trivial amount of similar data. Also, in venti+

we cannot cross block boundaries when the matching regions are extended. This
particular issue may be alleviated by choosing anchors in a way that makes anchors
for Si fall on subset of the anchors for Ri

3.

3This can be done by using the same Rabin polynomial for both, and choosing the anchor
defining values for Si be a subset of the defining values for Ri.



4 VASILE GABURICI

We correct this flaws in proposing a new file system wonkyfs, that uses the
file-block relationship for similarity prediction instead the block-sublock relation-
ship. Furhtermore, we eliminate the redundant hashtable Si which also happens
to make data retreival determistic. The key difference from venti that allows these
improvements is to include the file splitting layer in the system.

A file inode in wonkyfs is identified in the traditional manner by an identifier that
does not depend on the file contents. For simplicity, the file inode stores a list of
block byte ranges. For this encoding to be effective, there is minmum threshold for
a byte range to be worth specifying, but we will ignore this detail in here. Blocks
are also identified in the traditional way (perhaps based on their position disk).
The regions used for finding similarity are no longer included in blocks, but may
span blocks. We shall call them s-regions. The hashtable Ri maps an s-region to a
set of inode byte ranges that exactly match that region.

Writing a new file Pi in wonkyfs follows the our method: (i) the file is split in
s-regions that are matched against Ri. For the surviving regions, the files (and
byte ranges) that correspond to them in the file system are retrieved. (ii) These
surviving regions are extended linearly. (iii) For each region in Pi we select the
larges corresponding surviving region. (iv) The resulting matched file byte ranges
are mapped to block byte ranges using the file inodes, and for any unmatched region
in Pi we create a new block (or multiple blocks if we want to limit block size). The
new file inode is written with the appropriate blocks and byte ranges. (v) Ri is
extended with all unmatched regions from Pi.

1.2.3. Burns & Long backup system. The backup system of Burns & Long [BL97],
build by modifing IBM ADSM, uses a single file to diff against. Any file name
changes would throw off the algorithm. We can trivially use the wonkyfs algorithm
to find more that one file to diff against based on file contents.

2. An Extension for Caches

2.1. Description. We extend the method from section 1 in two ways: first, we add
support for removal of strings from Ti, and second, we adapt our method to the
case where only a subset of Ti ⊇ Ci is readable directly. These extensions allow us
to apply our method to caches. Note that supporting deletions from Ti does equate
support for a “fully fledged” file system, because (partial) overwrites are still not
supported.

Formally, adding support for deletions makes the sequence Φ = T0, T1, . . . , Tn, . . .
be defined by choosing for each i one of the two rules Ti+1 = Ti ∪ {Pi} or Ti+1 =
Ti−{Di} s.t. Di ∈ Ti. The only addition that our method requires is that deletion
from Si be performed efficiently w.r.t. the size of Ti. This requirement is trivially
met by the classic index structures.

The extension for a cache is a bit more involved. We need to define writing,
reading and deletion. At each step i we chose to perform one of these three opera-
tions. For writing, we choose to add a new element Pi to Ti, so we also add Pi to
Ci, but at the same time may to choose to delete an element from Ci (i.e. either
simply add to the cache ore perform a cache replacement). For reading, an element
Pi ∈ Ti is to be added to Ci, again possibly replacing an element in Ci. For deletion,
we choose to delete an element from Ti, and we also delete it from Ci if contained
in it. The two sequences Ci, Ti model a client-server system where the cache Ci is
on the client and the full file system Ti is on the server. We define two problems



A FRACTIONAL DIFFERENCING METHOD FOR FILE SYSTEM DATA STORAGE AND TRANSMISSION5

in this context: the write problem is to send a new pattern Pi to the server using
minimal bandwidth, and the read problem is to send a pattern from the server to
the client, which may be new w.r.t. Ci. Except for the inclusion property that hold
between Ci and Ti, the problem is symmetrical. Thus, it makes sense to consider
two index structures SC

i and ST
i .

If the index structures are hashtables using a sensible hash function which map
s-regions to file byte ranges, then we can send the hash values as high probability
proxies of the s-regions. LBFS [MCM01] uses exactly this solution for reducing
network traffic. In the case that the opposite side hashtable does not have the
exact s-region (called chunk in LBFS), a negative acknowledgement (nak) is sent
back, and the actual data of the s-region is sent.

2.2. Applications.

2.2.1. LBFS. A first way to extend LBFS is use the approach we took for venti+,
i.e. keep two additonal index structures at sub-chunk level RC

i and RT
i . For writes,

when nak come back for a chunk hash, simply find similar chunks using RC
i and

send a difference against those. In the case of a read, the problem is complicated
by the fact the server may choose to difference against chunks not present in Ci.
There are several solutions to this problem, the most practical is for the server to
maintain an approximation of the client cache set, e.g. using a Bloom filter. Any
false positives in the Bloom filter will require that the regions in Pi corresponding
to false positive hits in the Bloom filter be actually sent to the client.

The exact approach used for wonkyfs will not work for improving LBFS because
SC

i and ST
i cannot be dropped without losing the ability to compute (coarse)

differences agains the remote party. We can however mitigate this by dropping RC
i

and RT
i , and using somewhat smaller chunk size. Furthermore, we modify SC

i and
ST

i to map a chunk not to only one file byte range, but to all the ranges that match
it. After a nak, the offending chunk may thus be mapped to all the files that contain
it using the local Si. Using the wonkyfs approach, we find similar files locally and
for naked hashes, we send file differences restricted to the byte range of the chunk
in Pi. Unlike the wonkyfs case, it is not clear wheter is approach is superior to the
venti+ approach. It does however have the advantage that the Bloom filter on the
server needs to map files, not chunks, so it may be smaller in size.

2.2.2. Motefs. The original idea in motefs is to perform only local diffing, thus in
a way it is the opposite of LBFS. Because SC

i and ST
i are no longer required, we

can use the wonkyfs solution and keep only RC
i and RT

i . This allows for a unfied
differencing solution both for storage and network transmission; the observation
that Bloom filter is need on the server still applies. Motefs proposed the use file
metadata rules to determine candidate files for differencing. Our method uses actual
file data, but the two approaches may be combined by including in the surviving
set files based on our method and metadata rules.

2.2.3. Backup system. The backup system of Burns & Long [BL97] can be improved
probabilistically by using a hashtable ST

i to keep hashes for (some) blocks no longer
available. Thus, precise differencing can be done against the cached subset, and
less precise against the larger hashed subset.



6 VASILE GABURICI

3. Related and Future Work

We only covered very simple algoritms and data structures in here. Specifically,
we need to evaluate other: algorithm and data structure (when a hashtable is not
mandatory like in LBFS) for filtering (i), algorithm for extending survivors (ii).
For (ii), Myers ε-matching algorithm [Mye94], and more recent algorithms covered
in [NR02] are interesting candidates. The problem with Myers algorithm is that it
performs poorly for large alphabet sizes; 256 is large in this case.

References

[BL97] Randal C. Burns and Darrell D. E. Long. Efficient distributed backup with delta com-

pression. In I/O in Parallel and Distributed Systems, pages 27–36, 1997.
[Gus97] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

[Man94] Udi Manber. Finding similar files in a large file system. In USENIX, editor, Proceed-
ings of the Winter 1994 USENIX Conference: January 17–21, 1994, San Francisco,

California, USA, pages 1–10, Berkeley, CA, USA, Winter 1994. USENIX. Also as TR

93-33.
[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth network

file system. In Proceedings of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP ’01), pages 174–187, Chateau Lake Louise, Banff, Canada, October 2001.

[Mye94] Eugene W. Myers. A sublinear algorithm for approximate keyword searching. Algorith-

mica, 12(4/5):345–374, 1994.
[NR02] Gonzalo Navarro and Mathieu Raffinot. Flexible Pattern Matching in Strings. Cam-

bridge University Press, 2002.

[QD02] Sean Quinlan and Sean Dorward. Venti: A new approach to archival data storage. In
Proceedings of the FAST ’02 Conference on File and Storage Technologies (FAST-02),

pages 89–102, Berkeley, CA, January 28–30 2002. USENIX Association.


	1. The Basic Method
	1.1. Description
	1.2. Applications

	2. An Extension for Caches
	2.1. Description
	2.2. Applications

	3. Related and Future Work
	References

