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Abstract 
 

The evaluation of action recognition algorithms on 

datasets with a large number of action classes taken under 

uncontrolled conditions reveals the insights and 

shortcomings of the algorithms, enabling fair comparisons 

across them. In this paper, we evaluate label consistent K-

SVD (LC-KSVD), a discriminative dictionary learning 

algorithm for sparse representation of input signals, on the 

UCF101 action dataset. LC-KSVD incorporates a new 

label consistency constraint in addition to the 

reconstruction error and classification error in the 

objective function, so as to enforce discriminability during 

the dictionary learning process. UCF101 is currently the 

largest and most challenging action dataset, consisting of 

101 action classes with 13320 clips. We obtained 66.1% 

overall classification accuracy of LC-KSVD1 and 66.3% of 

LC-KSVD2 on three standard UCF101 train/test partitions, 

which outperform the baseline result (43.9%) obtained 

using a naïve Bag-of-Words approach. Furthermore, we 

analyze the LC-KSVD classifier, learned jointly in the 

dictionary learning process, by comparison with an SVM 

classifier, and observe marginally better performance than 

the SVM classifier. 
 

1. Introduction 

Action recognition in the computer vision community 

has been widely researched but remains challenging. 

Several approaches have been introduced to tackle this 

topic, as comprehensively surveyed in recent papers [1], 

[2]. Despite the massive demands on action recognition 

from a variety of application areas such as user-uploaded 

online videos, surveillance, camera-equipped appliances, 

etc., it seems existing approaches are not yet ready to go 

into the wild since there is still a considerable gap between 

the performance on action recognition in research labs and 

the real world. The main reason for the difference is that 

many existing recognition algorithms are evaluated on 

datasets containing only a small number of action classes 

taken under controlled conditions with similar scenarios, 

e.g. KTH, Weizmann, IXMAS, which do not reflect the 

human actions in the real world. 

Recently, larger and more realistic action video datasets 

have been released to make the evaluation processes of 

action recognition algorithms much more practical. They 

contain a large number of action classes and more clips for 

each class, uncontrolled recording conditions such as 

background cluttering, varying scale, camera movement, 

lighting, occlusion, etc. HMDB51 [6], UFC YouTube [7], 

UFC50, and UFC101 [8] are examples of this kind of 

dataset that include real human actions in the wild. Section 

2 describes these datasets in detail.  

In this paper, we evaluate label consistent K-SVD (LC-

KSVD) [3], a dictionary learning algorithm for sparse 

representation of input signals, on the UCF101 dataset, 

which is currently the largest and most challenging action 

dataset. K-SVD [4] is an algorithm for producing 

overcomplete dictionaries for the sparse representation of 

input signals. K-SVD searches the best possible dictionary 

that represents each input signal as a sparse linear 

combination of dictionary atoms, while minimizing the 

reconstruction error. LC-KSVD aims to leverage the label 

information of input signals to design a discriminative as 

well as reconstructive dictionary by incorporating a new 

label consistency constraint called “discriminative sparse-

code error” into the K-SVD objective function. In the 

previous work of Jiang et at. [3], LC-KSVD was evaluated 

on static image datasets such as Extended YaleB, AR face 

database, Caltech101, Caltech256, and 15 scene categories 

for image classification purpose. LC-KSVD was also 

evaluated on an action dataset, UCF Sports, in [3] but the 

dataset only contains 10 sport action classes, so it is 

necessary to evaluate the performance of the algorithm on 

action recognition task using a more realistic dataset. 

Our contribution is twofold. First, we evaluate the LC-

KSVD dictionary learning algorithm on the largest action 

dataset with detailed parameter setting. Also we analyze the 

LC-KSVD classifier by comparison with a SVM classifier 

in order to observe how efficient the LC-KSVD classifier 

is. This paper is structured as follows. Section 2 briefly 

summarizes the existing action datasets. The theory of K-

SVD and LC-KSVD is described in Section 3. 

Experimental results and evaluation of the method are 

presented in Section 4. Finally, Section 5 draws 

conclusions. 
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2. Action Datasets 

There have been many datasets on human action and 

activity recognition, each with their own attributes in terms 

of recording scenario, number of actions, camera 

movement, etc. Chaquet et al. [5] presents a detailed 

summary of a large number of action datasets.  

KTH and Weizmann are two early video datasets created 

for action recognition. KTH has 600 videos of six human 

actions filmed by 25 actors in four different scenarios. 

Weizmann dataset includes 10 human actions performed by 

nine actors. Although KTH changes the clothing of actors 

and lighting to add variations, it is hard to expect them to 

reflect the human actions in a real world as they were filmed 

in controlled conditions with static or simple background, 

fixed viewpoint, similar action scenarios, etc.  

HMDB51 [6] is one of the largest datasets that contains 

6849 clips divided into 51 action classes. HMDB51 and 

UCF datasets were collected from various sources, e.g. 

movies, YouTube, and Google videos. UCF YouTube [7] 

includes 11 actions classes, each of which is grouped into 

25 groups with more than four clips. UCF50 is an extension 

of UCF YouTube, consists of 50 actions over 6K clips 

collected in the same way as UCF YouTube dataset. 

UCF101 [8] is currently the largest dataset, containing 101 

action classes with 13320 clips and 27 hours of footage. 

More details about this dataset are provided in section 4.1. 

Note that the videos in HMDB51 and UCF datasets were 

collected from various sources, all captured in uncontrolled 

situations such as background cluttering, varying camera 

movements, low quality, lighting changes, and various 

scales. This makes these datasets challenging to action 

recognition algorithms, and enables realistic analysis of 

these algorithms. 

3. K-SVD and Label Consistent K-SVD 

3.1. K-SVD 

Aharon et al. [4] introduced K-SVD for learning an 

overcomplete dictionary for the sparse representation of 

input signals. Given a set of signals Y =  {𝑦𝑖}𝑖=1
𝑁 ∈

ℝ𝑛×𝑁that contains 𝑛-dimensional 𝑁 signals,  K-SVD  

searches the best possible dictionary D ∈ ℝ𝑛×𝐾 that 

represents each signal of Y as a sparse linear combination 

of 𝐾 prototype signal-atoms,  {𝑑𝑖}𝑖=1
𝐾 , of D. The dictionary 

D and the sparse representation X are obtained by 

minimizing the reconstruction error while preserving the 

sparsity constraint as below: 

 

min
𝐷,𝑋

‖𝑌 − 𝐷𝑋‖𝐹
2  s. t. ∀𝑖, ‖𝑥𝑖‖0 ≤ 𝑇  (1) 

  

The goal of K-SVD is to minimize the reconstruction 

error, ‖𝑌 − 𝐷𝑋‖𝐹
2 , while preserving the sparsity constraint, 

‖𝑥𝑖‖0 ≤ 𝑇, that restricts the number of nonzero elements in 

each 𝑥𝑖 becomes less than 𝑇. To this end K-SVD alternates 

sparse coding and dictionary update iteratively until 

convergence.  It first finds the sparse coding matrix X  with 

fixed D using an approximation pursuit method. Once X is 

calculated, K-SVD updates the dictionary D to obtain a 

better sparse representation. In particular, this step updates 

one signal-atom, 𝑑𝑘 , and its corresponding coefficient 

values stored as a row in X at a time, aiming to reduce the 

mean square error. Updating a dictionary element and its 

coefficient values simultaneously results in faster 

convergence as the later updates can be based on the 

previously updated values. Singular value decomposition 

(SVD) is the straightforward solution for each update. 

3.2. Label Consistent L-SVD 

K-SVD designs reconstructive dictionaries that 

minimize the reconstruction error of the original signals Y. 

The learned dictionary is suited for signal reconstruction 

but is less likely to be useful for signal classification, as the 

dictionary learning process does not avail itself of input 

signal class label information. 

Once a dictionary is obtained, sparse codings based on 

the dictionary can be used for learning classifiers (one-

versus-all or pairwise), but the dictionary is likely 

suboptimal for this task. A better approach would be to 

jointly learn the classifier and dictionary at once by 

incorporating a classification term in the objective function, 

thus producing a dictionary that is more suited for 

classification. Jiang et al. [3] proposed Label Consistent K-

SVD (LC-KSVD) that incorporates a new label consistency 

constraint and the classification term of the input signals 

into the objective function, which leads to a discriminative 

as well as reconstructive dictionary. This model jointly 

learns a dictionary and a classifier, which are both more 

appropriate for classification and reconstruction tasks. In 

[3], Jiang et al. introduced two LC-KSVD approaches, LC-

KSVD1 and LC-KSVD2, that add 1) only a label 

consistency constraint and 2) a classification term in 

addition to the label consistency constraint into Eq. (1), 

respectively. 

LC-KSVD1 adds a label consistency constraint that 

encourages signals of the same class to have similar sparse 

codings. The objective function of LC-KSVD1 can be 

defined as 

 

min
𝐷,𝑋,𝐴

‖𝑌 − 𝐷𝑋‖𝐹
2 + 𝛼‖𝑄 − 𝐴𝑋‖𝐹

2   

s. t. ∀𝑖, ‖𝑥𝑖‖0 ≤ 𝑇 
(2) 

 

where 𝑄 ∈ ℝ𝐾×𝑁 is a label matrix that contains the ideal 

sparse coding distribution where the class relations between 

each sparse coding in 𝑋 and the dictionary elements in 𝐷 

are represented, and 𝐴 ∈ ℝ𝐾×𝐾 is a transformation matrix 

that approximates the matrix Q from the (yet undetermined) 

sparse codings 𝑋. The parameter 𝛼 controls the trade-off 
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between the reconstruction and label consistency terms. In 

detail, a column 𝑞𝑖 ∈ ℝ𝐾in 𝑄, has nonzero values only 

where the corresponding dictionary elements are from the 

same class as the ith signal 𝑦𝑖. For example, if 𝑦𝑖 belongs to 

class c, then only the values in 𝑞𝑖 that corresponding to the 

c-class dictionary elements are nonzero. By incorporating 

the label consistency constrain ‖𝑄 − 𝐴𝑋‖𝐹
2  that enforces 

the transformed sparse coding 𝐴𝑋 to be similar to the 

discriminative sparse coding matrix 𝑄, the dictionary D 

becomes more discriminative than the dictionary learned in 

Eq. (1). 

LC-KSVD2 adds a classification term in addition to the 

label consistency constraint into the objective function as 

another way to learn a discriminative dictionary for the 

classification task. The objective function for LC-KSVD2 

can be defined as 

 

min
𝐷,𝑋,𝐴,𝑊

‖𝑌 − 𝐷𝑋‖𝐹
2 + 𝛼‖𝑄 − 𝐴𝑋‖𝐹

2  (3) 

+𝛽‖𝐻 − 𝑊𝑋‖𝐹
2  s. t. ∀𝑖, ‖𝑥𝑖‖0 ≤ 𝑇 

 

where 𝐻 ∈ ℝ𝑚×𝑁 contains the class labels of the input 

signals 𝑌, each of which belongs to one of 𝑚 classes, W is 

the classifier matrix, and 𝛼 and 𝛽 control the contributions 

of the terms. A column ℎ𝑖 ∈ ℝ𝑚in 𝐻 is a label vector that 

has one nonzero value where it denotes the class of the 

corresponding input signal 𝑦𝑖 . The constraint that 𝑊𝑋 

should approximate the truth classification result 𝐻 enables 

the dictionary designed by LC-KSVD2 to be more suited 

for the classification task. 

Note that both LC-KSVD1 and LC-KSVD2 learn a 

single dictionary and a multiclass classifier, which is in 

contrast to some dictionary learning approaches where 

multiple dictionaries or classifiers (pairwise or one-versus-

all) are computed[9], [10]. LC-KSVD2 learns a dictionary 

and a classifier simultaneously, avoiding local optima that 

might be obtained if the classifier and the dictionary were 

learned separately. The classifier for LC-KSVD1 is learned 

separately using the ridge regression model [11]. Our 

experiments in section 4.5 compare the classification 

performance between the LC-KSVD classifier and a SVM 

classifier which is learned using the sparse codings 

computed using the LC-LSVD dictionary. 

4. Experiments 

We evaluate LC-KSVD on the UCF101 action dataset 

through several parameter optimizing steps. We also 

conduct an experiment to see how discriminative the LC-

KSVD classifier is compared to other classifiers that are 

based on separate classifier and dictionary learning steps. 

To this end, we learn an SVM classifier using the sparse 

codings of a training set computed based on the LC-KSVD 

dictionary. 

4.1. Dataset and Feature Descriptors 

UCF101 is currently the largest dataset, containing101 

action classes in 13320 clips compiled from YouTube.  See 

Fig. 5 for the whole list of the 101 actions included. Each 

of the 101 action classes belongs to one of five class types: 

Human-Object Interaction, Body-Motion Only, Human-

Human Interaction, Playing Music Instruments, and Sports. 

Fig. 1 shows some sample frames of this dataset. 

 

     

(a) Human-Object Interaction 

   

(b) Body-Motion Only 

     

(c) Human-Human Interaction 

     

(d) Playing Musical Instruments 

     

(e) Sports 

Figure 1. Example snapshots of five action class types from the 

UCF101 dataset. Note that the objects of the videos are all in 

different scales and the backgrounds are uncontrolled. 

UCF101 is one of the most challenging action datasets 

compared to others in terms of scale and its uncontrolled 

conditions. It includes 101 action classes which is currently 

the largest number with 13K user-uploaded clips recorded 

under unconstrained realistic environments covering 

camera motion, cluttered background, various lighting,  

occlusion, low quality, etc. 

We represent each clip by three types of feature 

descriptor which are most commonly used in action 

recognition: SIFT [12], STIP [13], and DTF [14]. In 

particular, DTF represents a clip by computing HOG, HOF, 

MGH, and trajectory descriptors along the dense motion 

trajectories. Each of the six descriptors, SIFT, STIP and 

four DTF descriptors, is represented using a standard bag-

of-features approach with 4,000 visual words [22]. We first 

conduct L1-normalization for each feature descriptor, then 
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concatenate them in a various combinations to form a 

discriminative feature descriptions. The concatenated 

feature descriptors of a clip form a high dimensional vector 

(4000d ~ 24000d), thus PCA is performed to reduce the 

feature dimension. Section 4.2 compares the different 

combinations of descriptors. The dataset is partitioned into 

three train/test sets, following the guideline of the standard 

evaluation setup [22]. 

4.2. Feature Descriptor Comparison 

The combination of three feature descriptors form a high 

dimensional vector (< 24000d) if concatenated. As shown 

in Fig. 2, we first compare individual descriptor, then 

combine them to find the most discriminative and 

complementary combinations for the preference on low 

dimensional video representation. Compared to SIFT and 

STIP features, DTF shows much higher discrimination 

power for the classification task. The feature concatenations 

along with DTF slightly change the classification accuracy. 

Finally, we use DTF+STIP concatenation for the 

representation of videos in the following experiments. 

 

 
Figure 2. Classification accuracy of individual feature descriptors, 

and some combinations across them. 

4.3. 𝜶 and 𝜷:Label Consistency and Classification 

constraints 

𝛼 and 𝛽 control the contributions of the label consistency 

and classification terms along with the reconstruction error, 

respectively. Fig. 3 shows the classification accuracy for the 

selections of 𝛼 and 𝛽; while we perform a coarser search 

over a larger range of 𝛼 and 𝛽 values, we only show the 

most interesting range where performance is optimal. We 

observe 𝛼 = 0.012 and 𝛽 = 0.001 yield optimal 

performance on UCF101. 

 

 
Figure 3. Classification accuracy on the UCF101 dataset with 

different 𝛼 and 𝛽.  

4.4.  Dictionary Size 

Each of three standard train/test partitions consists of 

over 9K train clips and over 3K test clips, there are about 90 

clips per action in each train set. As already shown in [3], 

LC-KSVD does not degrade much when using a portion of 

training clips compared to using the entire training set, so 

we test different sizes of dictionaries with 5, 10… 35, 40 

random clips per each action category, yielding 505, 

1010… 3525, 4040 elements dictionaries. It is also 

expected that having a compact dictionary will reduce 

computation time, although some approaches [15], [16] 

have been introduced for fast sparse coding. Fig. 4 shows 

the effects of different dictionary sizes on the classification 

accuracy. 

 

 

 

Figure 4. Classification accuracy variations along with the 

dictionary size. We select dictionary size 2525 as the size is 

relatively compact but preserves the classification accuracy. 
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4.5. Overall Performance 

We measure the overall performance of LC-KSVD using 

three standard train/test partitions. In addition, the LC-

KSVD classifier is compared to a SVM classifier learned 

using the sparse codes of same train/test sets computed 

using the LC-KSVD dictionary. Table 1 summarizes the 

experiment results.  

 
 LC-KSVD1/ 

LC-KSVD1+SVM 

LC-KSVD2/  

LC-KSVD2+SVM 

Set1 64.9% / 65.6% 65.3% / 65.1% 

Set2 66.1% / 65.9% 65.9% / 65.5% 

Set3 67.3% / 67.0% 67.7% / 67.1% 

Overall 66.1% / 66.2% 66.3% / 65.9% 
 

 

Table 1. Classification accuracy of three algorithms on three 

train/test partitions. Note that the LC-KSVD classification results 

are compared to a SVM classifier. 

 

Overall accuracies of both LC-KSVD1 (66.1%) and LC-

KSVD2 (66.3%) outperform the baseline accuracy 43.9% 

obtained using standard bag of words approach. To the best 

our knowledge, no action recognition paper has been 

published using UCF101 yet, thus direct comparison with 

any state-of-the-art results is not available. Instead, we 

compare our results with methods evaluated on UCF50 to 

get an abstract analysis by indirect comparison. State-of-

the-art performances on UCF50 are distributed in 

72.6%~81.03% [17], [18], [19], [20], which are higher than 

LC-KSVD. We find the reason of this in the scale of the 

datasets. UCF101 contains 51 classes more than UCF50 

which includes 50 classes with a total of 6676 clips. It is not 

a surprising result since  more action types lead to confusion 

and performance degradation. Reddy and Shah [17] studied 

the effect of increasing the number of action classes on the 

UCF YouTube by adding new actions from UCF50 one at 

a time. The performances on the initial 11 actions dropped 

13.18% in average, once 39 new actions from UCF50 

added. Moreover, standard train/test partitions of UCF101 

for direct comparison across different algorithms are for 3-

fold group-wise cross validation. It is already known that 

video wise cross-validation would yield higher 

performance than group wise validation.  This is because a 

set of clips belonging to a group is just a sequential division 

of a long video, thus separating clips from a same group 

into train and test sets as done in video wise cross-validation 

would give higher performance. For example, Sadanand 

and Corso [19] obtained 76.4% accuracy on UCF50 under 

video wise cross–validation, but observed 57.9% accuracy 

when group wise validation is performed. Table 2 and Table 

3 show the per-class accuracy and per-type accuracy of LC-

KSVD2 on Set 3, respectively. 

 

 

 

Billiards (5)   100.0 PlayingDhol (4)   80.5 TennisSwing (5)   57.8 

BodyWeightSquats (2)   100.0 Biking (5)   80.0 CricketBowling (5)   57.1 

Bowling (5)   100.0 FloorGymnastics (5)   78.4 HulaHoop (1)   57.1 

Punch (5)   100.0 PoleVault (5)   77.8 LongJump (5)   55.9 

HammerThrow (5)   97.2 HandstandPushups (2)   76.2 Rafting (5)   55.9 

HorseRace (5)   97.2 ParallelBars (5)   75.0 CricketShot (5)   55.8 

TrampolineJumping (2)   97.1 SoccerPenalty (5)   74.3 BreastStroke (5)   55.2 

PlayingTabla (4)   96.8 CliffDiving (5)   73.7 Typing (1)   54.8 

BenchPress (5)   95.2 BlowDryHair (1)   73.5 Drumming (4)   54.2 

BasketballDunk (5)   95.0 Surfing (5)   71.8 HeadMassage (3)   53.7 

JumpingJack (2)   93.6 Fencing (5)   71.4 PlayingViolin (4)   53.6 

IceDancing (5)   92.9 Skiing (5)   71.1 BrushingTeeth (1)   52.9 

Skijet (5)   92.9 Rowing (5)   70.3 BaseballPitch (5)   52.5 

VolleyballSpiking (5)   92.9 TableTennisShot (5)   67.5 BlowingCandles (2)   50.0 

SkyDiving (5)   91.2 FrontCrawl (5)   66.7 TaiChi (2)   50.0 

BoxingPunchingBag (5)   91.1 SumoWrestling (5)   66.7 WalkingWithDog (2)   50.0 

HorseRiding (5)   90.9 YoYo (1)   66.7 ApplyLipstick (1)   48.5 

PlayingPiano (4)   90.9 UnevenBars (5)   65.6 CuttingInKitchen (1)   46.4 

SalsaSpin (3)   90.9 BandMarching (3)   65.1 RopeClimbing (2)   42.9 

WritingOnBoard (1)   90.5 FrisbeeCatch (5)   64.9 ShavingBeard (1)   41.7 

PlayingSitar (4)   89.1 RockClimbingIndoor (2)   64.9 PizzaTossing (1)   41.4 

JumpRope (1)   88.4 BalanceBeam (5)   64.5 Archery (5)   39.5 

Knitting (1)   88.2 Mixing (1)   64.5 Hammering (1)   35.7 

Diving (5)   86.8 JugglingBalls (1)   64.3 BabyCrawling (2)   33.3 

BoxingSpeedBag (5)   86.5 GolfSwing (5)   62.5 Basketball (5)   31.0 

Swing (2)   86.1 MilitaryParade (3)   62.2 Nunchucks (1)   29.7 

PommelHorse (5)   85.7 ThrowDiscus (5)   61.1 MoppingFloor (1)   28.1 

PullUps (2)   85.7 Kayaking (5)   60.9 Lunges (2)   27.3 

StillRings (5)   83.9 PushUps (2)   60.7 JavelinThrow (5)   24.2 

CleanAndJerk (5)   83.3 FieldHockeyPenalty (5)   60.0 HandstandWalking (2)   22.6 

PlayingCello (4)   83.0 PlayingDaf (4)   60.0 HighJump (5)   22.6 

SkateBoarding (1)   82.4 PlayingFlute (4)   59.5 Haircut (3)   11.4 

PlayingGuitar (4)   81.3 ApplyEyeMakeup (1)   59.5 Shotput (5)   11.4 

WallPushups (2)   81.0 SoccerJuggling (1)   58.1   

 

Table 2. Per-class classification accuracy of LC-KSVD sorted in 

descending order (class type: 1=Human-Object Interaction, 

2=Body-Motion Only, 3=Human-Human interaction, 4=Playing 

Musical Instruments, 5=Sports.)  

 

 
Action class type Average accuracy 

Human-Object Interaction 58.6% 

Body-Motion Only 63.8% 

Human-Human Interaction 56.7% 

Playing Musical Instruments 74.9% 

Sports 71.3% 
 

 

Table 3. Classification accuracy of L on three train/test partitions. 

 

Table 1 also shows the comparison of classification 

results between LC-KSVD and a SVM classifier. We learn 

a SVM classifier for each set of LC-KSVD1 and LC-

KSVD2 using liblinear [21]. In most case, LC-KSVD 

performs slightly better than the SVM classifier. Note that 

the LC-KSVD2 classifier is learned jointly during the 

dictionary learning process, thus no need to have additional 

classifier learning process as some of other dictionary 

learning approaches do. 

5. Conclusion 

In this paper, we evaluated LC-KSVD, a discriminative 

dictionary learning algorithm for sparse representation of 
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input signals, on UCF101 which is currently the largest and 

challenging action dataset. LC-KSVD incorporates a new 

label consistency constraint in addition to the 

reconstruction error and classification error in the objective 

function, so as to enforce discriminability during the 

dictionary learning process. We obtained 66.1% overall 

classification accuracy using LC-KSVD1 and 66.3% using 

LC-KSVD2 on three standard UCF101 train/test partitions, 

both of which outperform the baseline result (43.9%) 

obtained using a naïve Bag-of-Words approach. 

Furthermore, we analyzed the LC-KSVD classifier, learned 

jointly in the dictionary learning process, by comparison 

with a SVM classifier, and observe marginally better 

performance than the SVM classifier. 
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Figure 5. Confusion Matrix for the UCF101 dataset 


