
Discretizing Continuous Features for Naive Bayes and C4.5 Classifiers

Fatih Kaya
Department of Computer Science

University of Maryland, College Park
fatih@cs.umd.edu

ABSTRACT
In this work, popular discretization techniques for continuous features in data sets
are surveyed, and a new one based on equal width binning and error minimization
is introduced. This discretization technique is implemented for the UCI Machine
Learning Repository [7] dataset, Adult database and tested on two classifiers from
WEKA tool [6], NaiveBayes and J48. Relative performance changes for these
classifiers show that this particular discretization method results in greater
improvements in the classification performance of NaiveBayes as compared to the
J48 classifier.

1. INTRODUCTION

Discretization of continuous attributes is both a requirement and a way of performance
improvement for many machine learning algorithms. It is a requirement because those
algorithms are only designed to work for nominal feature spaces, therefore even if the
features are not discretized as a part of preprocessing work, the algorithm itself does
some sort of discretization during the learning process. This is also the reason for
aforementioned performance gains of using discretization beforehand.

This work will investigate the effects of “discretization of continuous variables in a data
set” to the performance of two machine learning methods, a naive Bayesian classifier and
a decision tree classifier, C4.5 [9]. The aim is to show that discretization will improve the
accuracy of naive Bayesian classifier more than the decision tree classifier. The data set
to be used is the “Adult Database” from the UCI Machine Learning Repository [7]. It
contains information about 48842 examples, each listing 14 attributes of a human. Goal is
to predict whether the income of the person exceeds 50K/year based on this data.

2. TASK AND ENVIRONMENT DESCRIPTION

In this project, task is to discretize the continuous features in the “Adult Database” and
measure the effects of discretization on the learning performances of two machine
learning algorithms, NaiveBayes and C4.5. On the other hand, environment is WEKA
(Waikato Environment for Knowledge Analysis) [6], which is a suit of machine learning
algorithms, and it includes the algorithms and testing constructs we will use. The C4.5
implementation in WEKA is named as J48, therefore this is the name we will refer to in
the following experimental sections.

There are a number of variables that we can control, both in the discretization process and
the environment itself. Adult database defines each person by 14 attributes, 6 of which
are continuous (age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week).
There are a few possible approaches to discretize each of these continuous variables. One
option is to choose a threshold value and divide the instances into two sets as the ones
below that threshold and the ones above the threshold. As an example consider the "age"
attribute: this attribute can be discretized by labeling people with ages smaller than 50 as
YOUNG and others as OLD. Yet another option would be to have more discrete values
for the continuous variable (i.e. [age<20 => YOUNG], [20<=age<50 => MIDDLEAGE],
[age>=50] => OLD), or we could define some minimum and maximum interval width
values and have a label for each of these intervals, i.e. a label for each age interval of 5
years or 7 years or so on. Thus for the age attribute, we may choose minimum meaningful
interval to be 5 years and maximum such interval to be 10, then starting with width 5, we
would label ages 0-5 as L1, 6-10 as L2, etc for the first experiment. Then we would
repeat the same process for interval width 6 for 2nd experiment, interval width 7 for 3rd
up to width 10. The minimum and maximum width values for intervals can also be
controlled. At this point, we can also control the step amount for the interval values
between min and max interval widths. For example for the example given above this step
value was assumed to be 1, thus intervals tested were of length 5, 6, ..., 10. Instead we
could choose the step to be 2, then the interval widths would be 5, 7, etc.

Controllable variables for the environment include the type of validation tests for the
learning algorithms and other options that can be set individually for the algorithms
through WEKA interface. WEKA uses tests to validate the learning performance of the
algorithms. The type of these tests is not preset and can be one of these options: using
training set, using a separate test file or using k-fold cross validation. Training set is the
set of instances fed to the learning algorithm; if this set is used also as test data (the first
option above) there is a high probability to get higher accuracy values, in other words,
results may be biased. On the other hand we may split our instances into two and use one
of them to train the algorithm (training set), and use the other (test set) to test the learned
classification, which corresponds to the second option of using separate test set. Final
option is a technique mostly used when there are not many instances to split. K-fold cross
validation is the process of partitioning instances into small subsets and training and
testing the learning algorithm for each subset such that in each run only one of the subsets
is used as test set and others as training set. Besides the testing options, we can also force
some individual settings for the learning algorithms, such as controlling the pruning
capabilities of C4.5. However, this may not be something useful to do, since most of the
time we will not be able to define similar options for both of the algorithms.

Based on the above independent variables, descriptions, and modified training sets, we
will keep track of a few dependent variables, which are either provided by WEKA or can
be measured from the results WEKA supplies. WEKA returns a set of result tuples for
each run on a training set with a particular algorithm. Among these tuples are correctly
classified instances, incorrectly classified instances, mean absolute error and root mean
squared error. These can be used to assess the accuracy of a single learning algorithm for

a particular set or to compare the performances of two algorithms on the same training set.
To have an idea about the effect of discretization, multiple versions of the training set,
ones which have continuous attributes and ones that have various levels of discretized
attributes, should be fed to a single algorithm and its results should be compared. For this
we will define new variables to compute the rate of changes in the accuracy of the
classifiers. Our final goal will be to compare these rates of changes for NaiveBayes and
C4.5 with respect to different level of discretizations on continuous attributes.

3. RELATED WORK

3.1 TAXONOMY FOR THE DISCRETIZATION OF CONTINUOUS FEATURES FOR MACHINE LEARNING

ALGORITHMS

Generally three different dimensions have been used for classifying the discretization
methods: “global vs. local”, “supervised vs. unsupervised”, and “static vs. dynamic” [1].
Local methods work on a single attribute, whereas global ones consider all of the
attributes and partition each into independent regions. The second dimension refers to the
use of class labels during discretization. Training data for classification learners include
instances, each of which is a set of attributes and a class label. When the learning
algorithm builds a model based on the training data, it is given a new instance and
expected to guess its class label correctly. Unsupervised methods do not make use of
these class labels for discretization. However, the supervised ones use them and try to
create intervals where most of the instances of a single interval have same class label
[5,11,13]. The last dimension regards the number of intervals to be created. This value is
either inputted from the user or determined after one pass over the training data for each
attribute by static methods. On the other hand dynamic methods search through all
possible values for all features therefore provide means to observe dependencies among
features. Below is a table that exemplifies some of the classification items given above.

 GLOBAL LOCAL
SUPERVISED Recursive

Minimal
Entropy
Partitioning

Hierarchical
Maximum
Entropy

UNSUPERVISED Equal Width
Interval,
Equal
Frequency
Interval

K-means
Clustering

Table 1: A simple classification for the discretization methods

3.2 FOUR CLASSES OF DISCRETIZATION ALGORITHMS

There has been a lot of work done in continuous feature discretization field
[1,2,4,5,8,12,13,14]. Below are four classes of those discretization algorithms and their
performance comparisons.

3.2.1 EQUAL WIDTH BINNING AND EQUAL FREQUENCY BINNING
Equal width binning [10,11] is one of the simplest approaches to unsupervised
discretization process together with equal frequency binning. Basic step for the first
method is to divide the range of values into k intervals of equal width. Similarly, equal
frequency binning [10,11] divides the range into k bins of equal frequency so that at the
end each bin has same number of instances (i.e. all/k). Since these methods do not make
use of the class labels, the discretization process possibly loses the classification
information, as instances of different classes can easily be grouped together. Additionally
equal width binning is sensitive to outliers: consider the case where all instances have
values between 1 and 20 except one that takes a value of 100 and k is given as 5. Then
this method would produce approximately 15 empty bins resulting in a meaningless
distribution of the attribute.

3.2.2 RECURSIVE MINIMAL ENTROPY PARTITIONING
Recursive Minimal Entropy Partitioning (RMEP) is a supervised discretization method
introduced by Fayyad and Irani [2]. RMEP aims to find intervals that minimize the class
information entropy. Entropy here is the information entropy defined by Shannon [3].

Below is an example entropy computation. Let class label has three values {c1, c2, c3}
and S’ be a set with 10 instances, 2 of which are of class c1, 4 of c2 and 4 of c3. Then the
entropy is calculated with the following formulation:

Entropy(S’) =
-(2/10)log2(2/10) –(4/10)log2(4/10) –(4/10)log2(4/10)

RMEP is a recursive algorithm, which given a set of instances, finds the interval
boundary that provides the minimum entropy. Thus if S is the initial set of all instances
and A is the attribute to be discretized, RPEM first finds the sets S1 and S2 (thus makes a
binary discretization based on A) such that the following value is the minimum:

(|S1|/|S|)Entropy(S1) + (|S2|/|S|)Entropy(S2)

Then this is recursively applied to S1 and S2, until a stopping condition is reached, which
is based on minimum description length principle. RPEM continuous dividing sets as
long as the desired entropy value is not reached, therefore the created intervals will be
smaller in length in regions where a high value of entropy is observed.

3.2.3 ERROR BASED DISCRETIZATION
Another supervised method is the error based discretization given by Maass [4] and
analyzed by Kohavi and Sahami [5]. This algorithm takes into consideration the
performance of the learning algorithm itself. It tries to find the optimal number of
intervals by computing the error observed after running the learning algorithm only for
the attribute that is being discretized. At the end optimal number of intervals found by

the algorithm will be the one that gives the minimum classification error on the training
data.

3.2.4 SOM BASED DISCRETIZATION
Final algorithm is the Self Organized Map (SOM) based discretization given by Vannucci
and Colla [8]. This one works similar to the k-means clustering algorithm, which
generates arbitrary number k of partitions based on minimum square error partitioning
method. The basic difference is that SOM does not use a fixed k value, rather defines a
max value and then the algorithm finds out one that preserves the sample’s distribution
more than the others.

3.3 REPORTED RESULTS FOR NAIVE BAYES AND C4.5 CLASSIFIERS

Dougherty, Hohavi and Sahami evaluate numerous discretization methods for naive
bayes classifier and C4.5 and show that almost any discretization method results in
significant performance gains for naive bayes, while RMEP is the optimal one for C4.5
[1]. Kohavi and Sahami compare entropy-based methods with error-based methods and
conclude that recursive minimal entropy partitioning outperforms error-based approaches
most of the time [5]. Finally, Vannucci and Colla, compare their SOM-based method and
k-means algorithms with other discretization algorithms and report that these two
produce better results than classical methods as they reflect the original distribution better
than the others [8].

4. RESEARCH QUESTION AND HYPOTHESES EXAMINED

Previous section gave information about various discretization techniques, which have
been widely used for many classification methods. Although error-based approaches have
been showed to be less effective than the entropy based ones [3], it is not clear if they
will have any positive effects if they are used to assist the simpler methods such as equal
width binning. Therefore, we are planning to investigate this issue by introducing some
extensions to the equal width binning (EWB) approach that uses this error minimization
metric while choosing the interval length.

As it was given in the previous section, EWB accepts a parameter k, i.e. the number of
intervals to be created and discretizes the attribute’s range into equal width partitions
based on this value. Given k, EBW ends up with the following interval ranges:

[minValue+i*width,minValue+(i+1)*width]
for i={0,1,...,k-1}
where width = (maxValue– minValue)/k

The number of intervals is always fixed and independent of the specific properties of the
training data. This restriction may have many unwanted side-effects. First consider the
case, when the training data is a large set of instances and k is a small value. Then the
produced bins will be overloaded, and will have the risk of grouping a large range of

instances together, therefore it will not have any auxiliary effect for the learning
algorithm. On the other hand if k is too big then the bins will have very few elements and
we will not be able to see any significant effect of discretization. Our intention for using
error metric is to have some means of associating k value with the properties of training
data and this builds our first hypothesis: Dynamically searching through the possible
values of k and recording corresponding classification performances should enable us to
adjust k according to the properties of training data and find the optimal one. Second
weakness of EBW was due to its being unsupervised. Ignoring class labels could cause
EBW to loss important classification information during discretization process. Our
expectation for this part is also to benefit from the error minimization process. Since
error-minimization indirectly evaluates class labels, accounting it, can minimize the
negative effects of class-ignorant discretization.

Another part of our work will be to assess the combined effect of discretization of
multiple attributes. We plan to search for optimal discretization intervals for each
attribute separately and then discretize all the features with collected information. Next
are the possible outcomes and our second hypothesis that we may observe: Using optimal
values for each attribute at the same time can result in the overall optimal set of interval
values; or when we have simultaneous discretizations, one can suppress other’s positive
effect. As an example, let’s assume we are to discretize two continuous features A and B
and our discretization method returns kA and kB as the optimal interval values. Assume
also that discretizing the training data only for attribute A with kA results in some
improvement but then discretization of B does not produce any performance gains on the
training data whose A attributes have been discretized. This constitutes a case where
discretization of one variable suppresses the other one.

Overall reasoning behind the first hypothesis is to utilize error minimization for the
simple approach of equal width binning. This frees us from statically determining the k
value by guessing one that will efficiently divide instances to bins, and makes it possible
to adjust it based on the characteristics of training data. The need for the second
hypothesis is inspired from the fact that the training data we are using and in general most
of the similar data sets have more than one continuous feature. Therefore, investigating
the discretization of all continuous features instead of just one, can reveal more improved
results. In order to provide this capability, we have to choose an optimal k value for each
of the continuous features. In doing so, second hypothesis presents the simplest approach:
to select each k separately based on the method supported by first hypothesis. We will
introduce an alternative approach below. A third conclusive hypothesis is the one that
compares the relative performance improvements seen for Naive Bayes classifier and the
decision tree classifier C4.5, due to this discretization process. Here, we expect that
Naive Bayes’s improvement will outperform C4.5 and make it more advantageous.

5. EXPERIMENTAL DESIGN

As mentioned in the previous section, experiments will be conducted in the WEKA
environment [6], using the NaiveBayes and J48 classifiers. For the experiments regarding
the first hypothesis, primary independent variable will be the number of intervals,

therefore various files, produced from the training set by discretizing at different levels
and for different variables, will be used. On the other hand, primary dependent variable
will be the number of correctly classified instances when a classifier is trained with these
training files. Learned classifiers will be tested on both training data via cross-folding and
also on separate test files, which contain instances that are not used to train the classifiers.
For the experiments regarding the second hypothesis, number of continuous features that
are discretized will be the independent variable; and dependent variable will again be
number of correctly classified instances. Finally for the comparison part, we will have a
dependent variable that codes the performance gain acquired by a level of discretization.
This is basically the ratio of correctly classified instances between discretized and not-
discretized training files.

In the first phase of experiments, we will find the optimal interval values for each of the
continuous features that Adult Database has [7]. This training set includes six continuous
attributes: age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week. Finding
the optimal k value means, searching through all possible values of k i.e. k’, discretizing
training file using k’ and feeding it to the classifiers. After which, the learned classifiers
are tested using cross-validation or a test file. Value that results in the maximum number
of correctly classified instances will be kept as the optimal one. For each attribute, we
will have one optimal k for Naive Bayes and one for C4.5 (i.e. J48). In second phase, we
will be using the optimal values from the first phase. Below is the experiment outline for
this phase suggested by the second hypothesis. Note that these steps will be repeated once
for each of Naive Bayes and C4.5 classifiers.

Outline 1
opt_age <- find_optimal(

training_file, age)
opt_fnlwgt <- find_optimal(

training_file, fnlwgt)
opt_education-num <- find_optimal (

training_file, education-num)
opt_capital-gain <- find_optimal (

training_file, capital-gain)
opt_capital-loss <- find_optimal(

training_file, capital-loss)
opt_hours-per-week <- find_optimal(

training_file, hours-per-week)

discretized_file <- discretize_file(

training_file with
opt_age, opt_fnlwgt,
opt_education-num,
opt_capital-gain,
opt_capital-loss,
opt_hours-per-week)

compute_performance_gain(

training_file, discretized_file)

Figure 1: First outline for discretizing multiple continuous features

One alternative to this approach that is slightly different would be to use intermediate
discretized files. When an optimal k value for an attribute is found, the current training
file is discretized with that value and used in the next step. Below is the corresponding
experiment outline.

Figure 2: Second outline for discretizing multiple continuous features

6. RESULTS

We have used the Adult database to test the discretization method. The database has
32561 instances. Below is the range information for the six continuous features over
these instances.

Continuous Variable Minimum Value at the

Adult Database
Maximum Value at the
Adult Database

age 17 90
fnlwgt 12285 1484705
education-num 1 16
capital-gain 0 99999
capital-loss 0 4356
hours-per-week 1 99

Table 2: Range information for the continuous features in the training dataset

Outline 2
opt_age <- find_optimal(

training_file, age)
intmed_file_age <- discretize_file(

training_file, age with opt_age)
opt_fnlwgt <- find_optimal(

intmed_file_age, fnlwgt)
intmed_file_fnlwgt <- discretize_file(

intmed_file_age,
fnlwgt with opt_fnlwgt)

...
discretized_file <- discretize_file(

intmed_file_capital-loss,
hours-per-week with
opt_hours-per-week)

compute_performance_gain(

training_file, discretized_file)

Initial experiment was to investigate the rough effects of discretization to the learning
time and prediction accuracy of both methods. To figure out that, we have first run these
algorithms without any discretization using a training file that has 2000 training instances
chosen from the Adult database and got the following results.

Learning
Method

Time Taken to Build
Model

Number of Correctly
Classified Instances

NaiveBayes 42 milliseconds 1705
J48(C4.5 imp in WEKA) 250 milliseconds 1721

Table 3: Performance measures for an unmodified training file of size 2000

Then we applied discretization to the “hours-per-week” attribute and run the tests again
to have an informal idea about the behavior. The hours-per-week variable takes values in
the range [1-99]. We have chosen to discretize this field using the length 38 for
NaiveBayes and length 28 for J48, which turned out to be the best values for
discretization of this field for the used training file. Below are the results.

Learning
Method

Time Taken to Build
Model

Number of Correctly
Classified Instances

NaiveBayes 16 milliseconds 1708
J48 150 milliseconds 1742

Table 4: Performance measures for a training file of size 2000 discretized for “hours-per-week”

attribute

Examining the results, we may informally argue that the optimal level of discretization
improves both the model construction time and prediction accuracy for both methods.
However; it is not true that we get improvements in the prediction accuracy for any
discretization level. As an example for discretization with interval length 10, NaiveBayes
predicts only 1700 of the instances correctly for the same file used above, which is worse
than the unmodified version.

Following these initial experiments, the first step was to find the optimal discretization
interval lengths for each of the continuous attributes for NaiveBayes and J48, separately,
for the whole training data of Adult database. Interval length refers to the difference
between the minimum and maximum values that can be included in a bin. As an example,
if it is 5 then, any attribute that has value [1-5] will be labeled as bin1 and any attribute
with value [6-10] will be labeled as bin2, and so on.

Notice from table 2 that two of the features have relatively large ranges: “fnlwgt” and
“capital-loss”. Since it would be costly and take too much time to examine all possible
interval length values for these ranges, we have omitted to discretize them. Therefore,
only four of these features were actually discretized. Below are the optimal interval
length values, found using all of the training data with 10-fold cross-validation.

CONTINUOUS
VARIABLES

Naive
Bayes

J48

age 4 8
education-num 4 2
capital-loss 11 30
hours-per-week 6 12

Table 5: Optimal discretization interval lengths for outline 1

Each optimal value has been found by using the fresh copy of the training file, in other
words, we have followed the first outline given above. Thus for “education-num”
attribute, we have discretized the training file 16 times, separately, for each of the interval
length values {1,2,...,15,16}. For each discretized file, we have made both of the
classifiers learn the file and via cross-validation we have noted their classification
performances. The value, which resulted in the greatest number of correctly classified
instances, has been noted as the optimal one.

Below is the table that shows time taken to build model and number of correctly
classified instances for the original training file and the files, which have been created by
discretizing only one of the features. First row is for the unmodified training file, for
which NaiveBayes classifies 27171 of the instances correctly and J48 classifies 28607
correctly. Second row shows that when only age is discretized NaiveBayes classifies
27243 of the instances correctly. Similarly, fourth row shows that when only capital-loss
is discretized J48 classifies 28632 of the instances correctly, and so on.

NaiveBayes J48
DISCRETIZED
CONTINUOUS
VARIABLE

time
to
build
model
(ms)

of
correctly
classified
instances

time
to
build
model
(ms)

of
correctly
classified
instances

none 425 27171 10056 28607

age 371 27243 8012 28648

education-
num

355 27209 8420 28598

capital-
loss

360 27673 8653 28632

hours-per-
week

322 27203 7908 28649

Table 6: Performance measurements for independent discretization of each feature

Table 6 shows that discretization process results in shorter times for building models for
both classifiers. NaiveBayes exhibits an increase in classification accuracy for each of
four features. This is also almost true for J48 except the education-num attribute for
which classification accuracy slightly decreases.

Next comes the table that shows the effect of discretization when it is applied to a
combination of continuous features. Second row in Table 7 is for the file, where only age
is discretized, third one is for the file where both age and education-num is discretized,
fourth is similarly for the file where age, education-num and capital-loss is discretized.
And finally the last one is the file with all four features discretized.

NaiveBayes J48
DISCRETIZED
CONTINUOUS
VARIABLE

time
to
build
model
(ms)

of
correctly
classified
instances

time
to
build
model
(ms)

of
correctly
classified
instances

none 425 27171 10056 28607

age 371 27243 8012 28648

+ education-
 num

312 27248 7640 28544

+ capital-
 loss

313 27240 5508 28371

+ hours-per-
week

(i.e. all 4
discretized)

183 27704 5635 28365

Table 7: Performance measurements for combined discretization of features

Results show that “using the optimal values from independent searches described in first
outline” works for NaiveBayes but not for J48. Discretization of all features enables
NaiveBayes to increase its correctly classified instances from 27171 to 27704; however,
it results in important accuracy decrease for J48: form 28607 to 28365. On the other
hand significant gains are observed in the model building times for both of the classifiers.

Next are the optimal values for the second outline. Optimal value for age is found using
the original training file; however in the following steps the original file is not used. To
find the optimum interval length value for education-num, training file is discretized for
age feature with the optimal value found in the previous step (i.e. 4 or 8) and then the
search is conducted using this file. Similarly, when an optimal value is found for
education-num, training file is discretized for both age and education-num before the
search for capital-loss’s optimal values.

CONTINUOUS
VARIABLES

NaiveBayes J48

age 4 8
education-num 11 6
capital-loss 5 26
hours-per-week 1 46

Table 8: Optimal discretization intervals for outline 2

Here comes the classification performance table for the second approach.

NaiveBayes J48
DISCRETIZED
CONTINUOUS
VARIABLE

time
to
build
model
(ms)

of
correctly
classified
instances

time
to
build
model
(ms)

of
correctly
classified
instances

none 425 27171 10056 28607

age 371 27243 8012 28648

+ education-
 num

316 27254 7106 28553

+ capital-
 loss

224 27703 6399 28500

+ hours-per-
week

(i.e. all 4
discretized)

202 27642 4957 28511

Table 9: Performance measurements for outline 2

Table 9 reveals that this alternative approach works better for J48, as it outputs 28511
correct instances as opposed to the 28365 instances of first outline; however, it is still
not enough to get any accuracy improvements. NaiveBayes again records significant
gains in both model build time and overall classification accuracy.

7. CONCLUSION

As we have defined in our hypotheses, we have always observed significant gains in
classification accuracy for NaiveBayes; however, J48 showed fluctuating results and no
positive change for overall discretization. On the other hand, runtimes for model
construction are always positively affected for both classifiers. For the overall
discretization of four features, NaiveBayes decreased its model construction time from
425 to 183 milliseconds, and increased its classification accuracy from 27171 to 27704
correct instances. If we are to compare this to the model construction time and accuracy
of J48 on unmodified training file, which are 10056 milliseconds and 28607 correct
instances, it is a significant improvement.

For the overall results that are obtained, there are many threats for internal and external
validity. Although many different training files are produced and used to explore the
behavior of discretization method, only the original training file is used to obtain the final
results, which exhibits a threat to the internal validity. Besides, for testing phase, only
cross-validation is used and in order to get healthier results different test files should be
gathered and deployed. Using a single database will hurt the external validity of the
project. Therefore, above experiments should be repeated on multiple datasets and

checked if they produce similar results or not. Another enhancement would be to find an
efficient way of discretizing the two variables, fnlwgt and capital-gain, which have been
omitted due to their large ranges; as the results show that discretizing features with large
ranges result in greater performance gains (see capital-loss in Table 6).

8. REFERENCES

[1] Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization

of continuous features. In Machine Learning: Proc. Twelfth International Conference, pp.
194-202. San Francisco, CA: Morgan Kauffmann.

[2] Fayyad, U. M. & Irani, K. B. (1993). Multi-interval discretization of continuous-valued
attributes for classification learning. In Proc. Thirteenth International Joint Conference on
Artificial Intelligence, pp. 1022-1027. San Francisco, CA: Morgan Kauffmann.

[3] Information theory. (2007, December 7). In Wikipedia, The Free Encyclopedia. Retrieved
10:33, December 9, 2007, from http://en.wikipedia.org/wiki/Information_theory

[4] Maass, W. (1994). Efficient agnostic PAC-learning with simple hypotheses. In Proc.
Seventh Annual ACM Conference on Computational Learning Theory, pp. 67-75.

[5] Kohavi, R., & Sahami, M. (1996). Error-based and entropy-based discretization of
continuous features. In Proc. Second International Conference on Knowledge Discovery in
Databases, pp. 114-199. San Mateo, CA: AAAI Press.

[6] Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and
techniques, 2nd Edition. Morgan Kaufmann, San Francisco.

[7] Asuncion, A & Newman, D. J. (2007). UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California,
Department of Information and Computer Science.

[8] Vannucci, M., & Colla, Valentina. (2004). Meaningful discretization of continuous features
for association rules mining by means of a SOM. In Proc. European Symposium on
Artificial Neural Networks, pp. 489-494. Bruges, Belgium.

[9] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

[10] Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes. In Proc.
European Working Session on Learning, pp. 164-178.

[11] Kerber, R. (1992). Chimerge: Discretization for numeric attributes. In National Conf. on
Artificial Intelligence, pp. 123-128.

[12] An, A., & Cercone, N. (1999). Discretization of continuous attributes for learning
classification rules. In Proc. Third Pacific-Asia Conf. on Methodologies for Knowledge
Discovery and Data Mining, pp. 509-514.

[13] Ho, K. M., & Scott, P. D. (1997). Zeta: A global method for discretization of continuous
variables. In Proc. Third International Conf. on Knowledge Discovery and Data Mining, pp.
191-194.

[14] Pazzani, M. J. (1995). An iterative improvement approach for the discretization of numeric
attributes in Bayesian classifiers. In Proc. First International Conf. on Knowledge Discovery
and Data Mining, pp. 228-233.

