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ABSTRACT 
In this work, popular discretization techniques for continuous features in data sets 
are surveyed, and a new one based on equal width binning and error minimization 
is introduced. This discretization technique is implemented for the UCI Machine 
Learning Repository [7] dataset, Adult database and tested on two classifiers from 
WEKA tool [6], NaiveBayes and J48. Relative performance changes for these 
classifiers show that this particular discretization method results in greater 
improvements in the classification performance of NaiveBayes as compared to the 
J48 classifier. 

 

1. INTRODUCTION 
 
Discretization of continuous attributes is both a requirement and a way of performance 
improvement for many machine learning algorithms. It is a requirement because those 
algorithms are only designed to work for nominal feature spaces, therefore even if the 
features are not discretized as a part of preprocessing work, the algorithm itself does 
some sort of discretization during the learning process. This is also the reason for 
aforementioned performance gains of using discretization beforehand.  
 
This work will investigate the effects of “discretization of continuous variables in a data 
set” to the performance of two machine learning methods, a naive Bayesian classifier and 
a decision tree classifier, C4.5 [9]. The aim is to show that discretization will improve the 
accuracy of naive Bayesian classifier more than the decision tree classifier. The data set 
to be used is the “Adult Database” from the UCI Machine Learning Repository [7]. It 
contains information about 48842 examples, each listing 14 attributes of a human. Goal is 
to predict whether the income of the person exceeds 50K/year based on this data. 
 

2. TASK AND ENVIRONMENT DESCRIPTION 
 
In this project, task is to discretize the continuous features in the “Adult Database” and 
measure the effects of discretization on the learning performances of two machine 
learning algorithms, NaiveBayes and C4.5. On the other hand, environment is WEKA 
(Waikato Environment for Knowledge Analysis) [6], which is a suit of machine learning 
algorithms, and it includes the algorithms and testing constructs we will use. The C4.5 
implementation in WEKA is named as J48, therefore this is the name we will refer to in 
the following experimental sections. 



 
There are a number of variables that we can control, both in the discretization process and 
the environment itself. Adult database defines each person by 14 attributes, 6 of which 
are continuous (age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week). 
There are a few possible approaches to discretize each of these continuous variables. One 
option is to choose a threshold value and divide the instances into two sets as the ones 
below that threshold and the ones above the threshold. As an example consider the "age" 
attribute: this attribute can be discretized by labeling people with ages smaller than 50 as 
YOUNG and others as OLD. Yet another option would be to have more discrete values 
for the continuous variable (i.e. [age<20 => YOUNG], [20<=age<50 => MIDDLEAGE], 
[age>=50] => OLD), or we could define some minimum and maximum interval width 
values and have a label for each of these intervals, i.e. a label for each age interval of 5 
years or 7 years or so on. Thus for the age attribute, we may choose minimum meaningful 
interval to be 5 years and maximum such interval to be 10, then starting with width 5, we 
would label ages 0-5 as L1, 6-10 as L2, etc for the first experiment. Then we would 
repeat the same process for interval width 6 for 2nd experiment, interval width 7 for 3rd 
up to width 10. The minimum and maximum width values for intervals can also be 
controlled. At this point, we can also control the step amount for the interval values 
between min and max interval widths. For example for the example given above this step 
value was assumed to be 1, thus intervals tested were of length 5, 6, ..., 10. Instead we 
could choose the step to be 2, then the interval widths would be 5, 7, etc. 
 
Controllable variables for the environment include the type of validation tests for the 
learning algorithms and other options that can be set individually for the algorithms 
through WEKA interface. WEKA uses tests to validate the learning performance of the 
algorithms. The type of these tests is not preset and can be one of these options: using 
training set, using a separate test file or using k-fold cross validation. Training set is the 
set of instances fed to the learning algorithm; if this set is used also as test data (the first 
option above) there is a high probability to get higher accuracy values, in other words, 
results may be biased. On the other hand we may split our instances into two and use one 
of them to train the algorithm (training set), and use the other (test set) to test the learned 
classification, which corresponds to the second option of using separate test set. Final 
option is a technique mostly used when there are not many instances to split. K-fold cross 
validation is the process of partitioning instances into small subsets and training and 
testing the learning algorithm for each subset such that in each run only one of the subsets 
is used as test set and others as training set. Besides the testing options, we can also force 
some individual settings for the learning algorithms, such as controlling the pruning 
capabilities of C4.5. However, this may not be something useful to do, since most of the 
time we will not be able to define similar options for both of the algorithms.  
 
Based on the above independent variables, descriptions, and modified training sets, we 
will keep track of a few dependent variables, which are either provided by WEKA or can 
be measured from the results WEKA supplies. WEKA returns a set of result tuples for 
each run on a training set with a particular algorithm. Among these tuples are correctly 
classified instances, incorrectly classified instances, mean absolute error and root mean 
squared error. These can be used to assess the accuracy of a single learning algorithm for 



a particular set or to compare the performances of two algorithms on the same training set. 
To have an idea about the effect of discretization, multiple versions of the training set, 
ones which have continuous attributes and ones that have various levels of discretized 
attributes, should be fed to a single algorithm and its results should be compared. For this 
we will define new variables to compute the rate of changes in the accuracy of the 
classifiers. Our final goal will be to compare these rates of changes for NaiveBayes and 
C4.5 with respect to different level of discretizations on continuous attributes.  
 
 

3.  RELATED WORK 
 
3.1 TAXONOMY FOR THE DISCRETIZATION OF CONTINUOUS FEATURES FOR MACHINE LEARNING 

ALGORITHMS 
 

Generally three different dimensions have been used for classifying the discretization 
methods: “global vs. local”, “supervised vs. unsupervised”, and “static vs. dynamic” [1]. 
Local methods work on a single attribute, whereas global ones consider all of the 
attributes and partition each into independent regions. The second dimension refers to the 
use of class labels during discretization. Training data for classification learners include 
instances, each of which is a set of attributes and a class label. When the learning 
algorithm builds a model based on the training data, it is given a new instance and 
expected to guess its class label correctly. Unsupervised methods do not make use of 
these class labels for discretization. However, the supervised ones use them and try to 
create intervals where most of the instances of a single interval have same class label 
[5,11,13]. The last dimension regards the number of intervals to be created. This value is 
either inputted from the user or determined after one pass over the training data for each 
attribute by static methods. On the other hand dynamic methods search through all 
possible values for all features therefore provide means to observe dependencies among 
features. Below is a table that exemplifies some of the classification items given above.  
 

 

 GLOBAL LOCAL 
SUPERVISED Recursive 

Minimal 
Entropy 
Partitioning  

Hierarchical 
Maximum 
Entropy 

UNSUPERVISED Equal Width 
Interval,  
Equal 
Frequency 
Interval 

K-means 
Clustering 

 
Table 1: A simple classification for the discretization methods 

 
 

3.2 FOUR CLASSES OF DISCRETIZATION ALGORITHMS 



There has been a lot of work done in continuous feature discretization field 
[1,2,4,5,8,12,13,14]. Below are four classes of those discretization algorithms and their 
performance comparisons. 

3.2.1 EQUAL WIDTH BINNING AND EQUAL FREQUENCY BINNING 
Equal width binning [10,11] is one of the simplest approaches to unsupervised 
discretization process together with equal frequency binning. Basic step for the first 
method is to divide the range of values into k intervals of equal width. Similarly, equal 
frequency binning [10,11] divides the range into k bins of equal frequency so that at the 
end each bin has same number of instances (i.e. all/k). Since these methods do not make 
use of the class labels, the discretization process possibly loses the classification 
information, as instances of different classes can easily be grouped together. Additionally 
equal width binning is sensitive to outliers: consider the case where all instances have 
values between 1 and 20 except one that takes a value of 100 and k is given as 5. Then 
this method would produce approximately 15 empty bins resulting in a meaningless 
distribution of the attribute. 
  
3.2.2 RECURSIVE MINIMAL ENTROPY PARTITIONING 
Recursive Minimal Entropy Partitioning (RMEP) is a supervised discretization method 
introduced by Fayyad and Irani [2]. RMEP aims to find intervals that minimize the class 
information entropy. Entropy here is the information entropy defined by Shannon [3].   
 
Below is an example entropy computation. Let class label has three values {c1, c2, c3} 
and S’ be a set with 10 instances, 2 of which are of class c1, 4 of c2 and 4 of c3. Then the 
entropy is calculated with the following formulation:  
 

Entropy(S’) =  
-(2/10)log2(2/10) –(4/10)log2(4/10) –(4/10)log2(4/10) 

 
RMEP is a recursive algorithm, which given a set of instances, finds the interval 
boundary that provides the minimum entropy. Thus if S is the initial set of all instances 
and A is the attribute to be discretized, RPEM first finds the sets S1 and S2 (thus makes a 
binary discretization based on A) such that the following value is the minimum: 
 

(|S1|/|S|)Entropy(S1) + (|S2|/|S|)Entropy(S2) 
 
Then this is recursively applied to S1 and S2, until a stopping condition is reached, which 
is based on minimum description length principle. RPEM continuous dividing sets as 
long as the desired entropy value is not reached, therefore the created intervals will be 
smaller in length in regions where a high value of entropy is observed. 

3.2.3 ERROR BASED DISCRETIZATION 
Another supervised method is the error based discretization given by Maass [4] and 
analyzed by Kohavi and Sahami [5]. This algorithm takes into consideration the 
performance of the learning algorithm itself. It tries to find the optimal number of 
intervals by computing the error observed after running the learning algorithm only for 
the attribute that is being discretized.  At the end optimal number of intervals found by 



the algorithm will be the one that gives the minimum classification error on the training 
data.  
 
3.2.4 SOM BASED DISCRETIZATION 
Final algorithm is the Self Organized Map (SOM) based discretization given by Vannucci 
and Colla [8]. This one works similar to the k-means clustering algorithm, which 
generates arbitrary number k of partitions based on minimum square error partitioning 
method. The basic difference is that SOM does not use a fixed k value, rather defines a 
max value and then the algorithm finds out one that preserves the sample’s distribution 
more than the others.  
 
3.3 REPORTED RESULTS FOR NAIVE BAYES AND C4.5 CLASSIFIERS 
 
Dougherty, Hohavi and Sahami evaluate numerous discretization methods for naive 
bayes classifier and C4.5 and show that almost any discretization method results in 
significant performance gains for naive bayes, while RMEP is the optimal one for C4.5 
[1].  Kohavi and Sahami compare entropy-based methods with error-based methods and 
conclude that recursive minimal entropy partitioning outperforms error-based approaches 
most of the time [5]. Finally, Vannucci and Colla, compare their SOM-based method and 
k-means algorithms with other discretization algorithms and report that these two 
produce better results than classical methods as they reflect the original distribution better 
than the others [8]. 
 

4. RESEARCH QUESTION AND HYPOTHESES EXAMINED 
 
Previous section gave information about various discretization techniques, which have 
been widely used for many classification methods. Although error-based approaches have 
been showed to be less effective than the entropy based ones [3], it is not clear if they 
will have any positive effects if they are used to assist the simpler methods such as equal 
width binning. Therefore, we are planning to investigate this issue by introducing some 
extensions to the equal width binning (EWB) approach that uses this error minimization 
metric while choosing the interval length.  
 
As it was given in the previous section, EWB accepts a parameter k, i.e. the number of 
intervals to be created and discretizes the attribute’s range into equal width partitions 
based on this value. Given k, EBW ends up with the following interval ranges: 
 

[minValue+i*width,minValue+(i+1)*width]  
for i={0,1,...,k-1} 
where width = (maxValue– minValue)/k 

 
The number of intervals is always fixed and independent of the specific properties of the 
training data. This restriction may have many unwanted side-effects. First consider the 
case, when the training data is a large set of instances and k is a small value. Then the 
produced bins will be overloaded, and will have the risk of grouping a large range of 



instances together, therefore it will not have any auxiliary effect for the learning 
algorithm. On the other hand if k is too big then the bins will have very few elements and 
we will not be able to see any significant effect of discretization. Our intention for using 
error metric is to have some means of associating k value with the properties of training 
data and this builds our first hypothesis: Dynamically searching through the possible 
values of k and recording corresponding classification performances should enable us to 
adjust k according to the properties of training data and find the optimal one. Second 
weakness of EBW was due to its being unsupervised. Ignoring class labels could cause 
EBW to loss important classification information during discretization process. Our 
expectation for this part is also to benefit from the error minimization process. Since 
error-minimization indirectly evaluates class labels, accounting it, can minimize the 
negative effects of class-ignorant discretization.  
  
Another part of our work will be to assess the combined effect of discretization of 
multiple attributes. We plan to search for optimal discretization intervals for each 
attribute separately and then discretize all the features with collected information. Next 
are the possible outcomes and our second hypothesis that we may observe: Using optimal 
values for each attribute at the same time can result in the overall optimal set of interval 
values; or when we have simultaneous discretizations, one can suppress other’s positive 
effect. As an example, let’s assume we are to discretize two continuous features A and B 
and our discretization method returns kA and kB as the optimal interval values. Assume 
also that discretizing the training data only for attribute A with kA results in some 
improvement but then discretization of B does not produce any performance gains on the 
training data whose A attributes have been discretized. This constitutes a case where 
discretization of one variable suppresses the other one.  
 
Overall reasoning behind the first hypothesis is to utilize error minimization for the 
simple approach of equal width binning. This frees us from statically determining the k 
value by guessing one that will efficiently divide instances to bins, and makes it possible 
to adjust it based on the characteristics of training data. The need for the second 
hypothesis is inspired from the fact that the training data we are using and in general most 
of the similar data sets have more than one continuous feature. Therefore, investigating 
the discretization of all continuous features instead of just one, can reveal more improved 
results. In order to provide this capability, we have to choose an optimal k value for each 
of the continuous features. In doing so, second hypothesis presents the simplest approach: 
to select each k separately based on the method supported by first hypothesis. We will 
introduce an alternative approach below. A third conclusive hypothesis is the one that 
compares the relative performance improvements seen for Naive Bayes classifier and the 
decision tree classifier C4.5, due to this discretization process. Here, we expect that 
Naive Bayes’s improvement will outperform C4.5 and make it more advantageous. 
 

5. EXPERIMENTAL DESIGN 
 
As mentioned in the previous section, experiments will be conducted in the WEKA 
environment [6], using the NaiveBayes and J48 classifiers. For the experiments regarding 
the first hypothesis, primary independent variable will be the number of intervals, 



therefore various files, produced from the training set by discretizing at different levels 
and for different variables, will be used. On the other hand, primary dependent variable 
will be the number of correctly classified instances when a classifier is trained with these 
training files. Learned classifiers will be tested on both training data via cross-folding and 
also on separate test files, which contain instances that are not used to train the classifiers. 
For the experiments regarding the second hypothesis, number of continuous features that 
are discretized will be the independent variable; and dependent variable will again be 
number of correctly classified instances. Finally for the comparison part, we will have a 
dependent variable that codes the performance gain acquired by a level of discretization. 
This is basically the ratio of correctly classified instances between discretized and not-
discretized training files.   
 
In the first phase of experiments, we will find the optimal interval values for each of the 
continuous features that Adult Database has [7]. This training set includes six continuous 
attributes: age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week. Finding 
the optimal k value means, searching through all possible values of k i.e. k’, discretizing 
training file using k’ and feeding it to the classifiers. After which, the learned classifiers 
are tested using cross-validation or a test file. Value that results in the maximum number 
of correctly classified instances will be kept as the optimal one. For each attribute, we 
will have one optimal k for Naive Bayes and one for C4.5 (i.e. J48). In second phase, we 
will be using the optimal values from the first phase. Below is the experiment outline for 
this phase suggested by the second hypothesis. Note that these steps will be repeated once 
for each of Naive Bayes and C4.5 classifiers.  
 

 

Outline 1 
opt_age <- find_optimal( 

training_file, age) 
opt_fnlwgt <- find_optimal( 

training_file, fnlwgt) 
opt_education-num <- find_optimal ( 

training_file, education-num) 
opt_capital-gain <- find_optimal ( 

training_file, capital-gain) 
opt_capital-loss <- find_optimal( 

training_file, capital-loss) 
opt_hours-per-week <- find_optimal( 

training_file, hours-per-week) 
 
discretized_file <- discretize_file( 

training_file with 
opt_age, opt_fnlwgt, 
opt_education-num, 
opt_capital-gain, 
opt_capital-loss, 
opt_hours-per-week) 

 
compute_performance_gain( 

training_file, discretized_file) 



Figure 1: First outline for discretizing multiple continuous features 
 
 
One alternative to this approach that is slightly different would be to use intermediate 
discretized files. When an optimal k value for an attribute is found, the current training 
file is discretized with that value and used in the next step. Below is the corresponding 
experiment outline.  

 
Figure 2: Second outline for discretizing multiple continuous features 

 
 

6. RESULTS 
 
We have used the Adult database to test the discretization method. The database has 
32561 instances. Below is the range information for the six continuous features over 
these instances.  
 
 
Continuous Variable Minimum Value at the 

Adult Database 
Maximum Value at the 
Adult Database 

age 17 90 
fnlwgt 12285 1484705 
education-num 1 16 
capital-gain 0 99999 
capital-loss 0 4356 
hours-per-week 1 99 
 

Table 2: Range information for the continuous features in the training dataset 
 

Outline 2 
opt_age <- find_optimal( 

training_file, age)  
intmed_file_age <- discretize_file( 

training_file, age with opt_age) 
opt_fnlwgt <- find_optimal( 

intmed_file_age, fnlwgt)  
intmed_file_fnlwgt <- discretize_file( 

intmed_file_age,  
fnlwgt with opt_fnlwgt) 

... 
discretized_file <- discretize_file( 

intmed_file_capital-loss,  
hours-per-week with  
opt_hours-per-week) 

 
compute_performance_gain( 

training_file, discretized_file) 
 



 
Initial experiment was to investigate the rough effects of discretization to the learning 
time and prediction accuracy of both methods. To figure out that, we have first run these 
algorithms without any discretization using a training file that has 2000 training instances 
chosen from the Adult database and got the following results. 
 
 
Learning  
Method 

Time Taken to Build 
Model 

Number of Correctly 
Classified Instances 

NaiveBayes 42 milliseconds 1705 
J48(C4.5 imp in WEKA) 250 milliseconds 1721 
  

Table 3: Performance measures for an unmodified training file of size 2000 
 
 
Then we applied discretization to the “hours-per-week” attribute and run the tests again 
to have an informal idea about the behavior. The hours-per-week variable takes values in 
the range [1-99]. We have chosen to discretize this field using the length 38 for 
NaiveBayes and length 28 for J48, which turned out to be the best values for 
discretization of this field for the used training file. Below are the results. 
 
 
Learning  
Method 

Time Taken to Build 
Model 

Number of Correctly 
Classified Instances 

NaiveBayes 16 milliseconds 1708 
J48 150 milliseconds 1742 
 
Table 4: Performance measures for a training file of size 2000 discretized for “hours-per-week” 

attribute 
 
 
Examining the results, we may informally argue that the optimal level of discretization 
improves both the model construction time and prediction accuracy for both methods. 
However; it is not true that we get improvements in the prediction accuracy for any 
discretization level. As an example for discretization with interval length 10, NaiveBayes 
predicts only 1700 of the instances correctly for the same file used above, which is worse 
than the unmodified version.  
 
Following these initial experiments, the first step was to find the optimal discretization 
interval lengths for each of the continuous attributes for NaiveBayes and J48, separately, 
for the whole training data of Adult database. Interval length refers to the difference 
between the minimum and maximum values that can be included in a bin. As an example, 
if it is 5 then, any attribute that has value [1-5] will be labeled as bin1 and any attribute 
with value [6-10] will be labeled as bin2, and so on.   
 
Notice from table 2 that two of the features have relatively large ranges: “fnlwgt” and 
“capital-loss”. Since it would be costly and take too much time to examine all possible 
interval length values for these ranges, we have omitted to discretize them. Therefore, 
only four of these features were actually discretized.  Below are the optimal interval 
length values, found using all of the training data with 10-fold cross-validation.  



 
CONTINUOUS  
VARIABLES 

Naive 
Bayes 

J48 

age 4 8 
education-num 4 2 
capital-loss 11 30 
hours-per-week 6 12 

 
Table 5: Optimal discretization interval lengths for outline 1 

 
 

Each optimal value has been found by using the fresh copy of the training file, in other 
words, we have followed the first outline given above. Thus for “education-num” 
attribute, we have discretized the training file 16 times, separately, for each of the interval 
length values {1,2,...,15,16}. For each discretized file, we have made both of the 
classifiers learn the file and via cross-validation we have noted their classification 
performances. The value, which resulted in the greatest number of correctly classified 
instances, has been noted as the optimal one.   
 
Below is the table that shows time taken to build model and number of correctly 
classified instances for the original training file and the files, which have been created by 
discretizing only one of the features. First row is for the unmodified training file, for 
which NaiveBayes classifies 27171 of the instances correctly and J48 classifies 28607 
correctly. Second row shows that when only age is discretized NaiveBayes classifies 
27243 of the instances correctly. Similarly, fourth row shows that when only capital-loss 
is discretized J48 classifies 28632 of the instances correctly, and so on. 
 
 

NaiveBayes J48  
DISCRETIZED 
CONTINUOUS  
VARIABLE 

time 
to 
build 
model
(ms) 

# of  
correctly 
classified 
instances  

time 
to 
build 
model 
(ms) 

# of  
correctly 
classified 
instances 

none 425 27171 10056 28607 

age 371 27243 8012 28648 

education- 
num 

355 27209 8420 28598 

capital- 
loss 

360 27673 8653 28632 

hours-per- 
week 

322 27203 7908 28649 

 
Table 6:  Performance measurements for independent discretization of each feature 

 
 
Table 6 shows that discretization process results in shorter times for building models for 
both classifiers. NaiveBayes exhibits an increase in classification accuracy for each of 
four features. This is also almost true for J48 except the education-num attribute for 
which classification accuracy slightly decreases. 



 
Next comes the table that shows the effect of discretization when it is applied to a 
combination of continuous features. Second row in Table 7 is for the file, where only age 
is discretized, third one is for the file where both age and education-num is discretized, 
fourth is similarly for the file where age, education-num and capital-loss is discretized. 
And finally the last one is the file with all four features discretized.  
 
 

NaiveBayes J48  
DISCRETIZED 
CONTINUOUS  
VARIABLE 

time 
to 
build 
model
(ms) 

# of  
correctly 
classified 
instances 

time 
to 
build 
model
(ms) 

# of  
correctly 
classified 
instances 

none 425 27171 10056 28607 

age 371 27243 8012 28648 

+ education- 
  num 

312 27248 7640 28544 

+ capital- 
  loss 

313 27240 5508 28371 

+ hours-per- 
week  

(i.e. all 4 
discretized) 

183 27704 5635 28365 

 
Table 7: Performance measurements for combined discretization of features 

 
 
Results show that “using the optimal values from independent searches described in first 
outline” works for NaiveBayes but not for J48. Discretization of all features enables 
NaiveBayes to increase its correctly classified instances from 27171 to 27704; however, 
it results in important accuracy decrease for J48: form 28607 to 28365.  On the other 
hand significant gains are observed in the model building times for both of the classifiers.  
 
Next are the optimal values for the second outline. Optimal value for age is found using 
the original training file; however in the following steps the original file is not used. To 
find the optimum interval length value for education-num, training file is discretized for 
age feature with the optimal value found in the previous step (i.e. 4 or 8) and then the 
search is conducted using this file. Similarly, when an optimal value is found for 
education-num, training file is discretized for both age and education-num before the 
search for capital-loss’s optimal values.  
 
 

CONTINUOUS 
VARIABLES 

NaiveBayes J48 

age 4 8 
education-num 11 6 
capital-loss 5 26 
hours-per-week 1 46 

 
Table 8: Optimal discretization intervals for outline 2  



 
 
Here comes the classification performance table for the second approach.  
 
 

NaiveBayes J48  
DISCRETIZED 
CONTINUOUS  
VARIABLE 

time 
to 
build 
model
(ms) 

# of  
correctly 
classified 
instances 

time 
to 
build 
model
(ms) 

# of  
correctly 
classified 
instances 

none 425 27171 10056 28607 

age 371 27243 8012 28648 

+ education- 
  num 

316 27254 7106 28553 

+ capital- 
  loss 

224 27703 6399 28500 

+ hours-per- 
week 

(i.e. all 4 
discretized) 

202 27642 4957 28511 

 
Table 9: Performance measurements for outline 2 

 
 

Table 9 reveals that this alternative approach works better for J48, as it outputs 28511 
correct  instances as opposed to the 28365 instances of first outline; however,  it is still 
not enough to get any accuracy improvements. NaiveBayes again records significant 
gains in both model build time and overall classification accuracy.  
 

7. CONCLUSION 
 
As we have defined in our hypotheses, we have always observed significant gains in 
classification accuracy for NaiveBayes; however, J48 showed fluctuating results and no 
positive change for overall discretization.  On the other hand, runtimes for model 
construction are always positively affected for both classifiers.  For the overall 
discretization of four features, NaiveBayes decreased its model construction time from 
425 to 183 milliseconds, and increased its classification accuracy from 27171 to 27704 
correct instances. If we are to compare this to the model construction time and accuracy 
of J48 on unmodified training file, which are 10056 milliseconds and 28607 correct 
instances, it is a significant improvement.   
 
For the overall results that are obtained, there are many threats for internal and external 
validity. Although many different training files are produced and used to explore the 
behavior of discretization method, only the original training file is used to obtain the final 
results, which exhibits a threat to the internal validity. Besides, for testing phase, only 
cross-validation is used and in order to get healthier results different test files should be 
gathered and deployed. Using a single database will hurt the external validity of the 
project. Therefore, above experiments should be repeated on multiple datasets and 



checked if they produce similar results or not.  Another enhancement would be to find an 
efficient way of discretizing the two variables, fnlwgt and capital-gain, which have been 
omitted due to their large ranges; as the results show that discretizing features with large 
ranges result in greater performance gains (see capital-loss in Table 6).  
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