
Bayesian Nonparametrics Analysis of Spatial
Temporal fMRI Signals

Philip Yang
Dept. Computer Science
University of Maryland

College Park
phi@cs.umd.edu

In any particular theory there is only as much real science as there is mathematics.
Immanuel Kant

This scholarly paper authored by Philip Yang will be used to partially fulfill the require-
ment of MSc in Computer Science (without thesis) at University of Maryland, College
Park.

Yiannis Aloimonos, Professor
Department of Computer Science
Director, Computer Vision Laboratory
Institute for Advanced Computer Studies
Neural and Cognitive Science Program
University of Maryland, College Park
Email: yiannis@cs.umd.edu, Tel. 3014051743

1 Introduction

The human brain has approximately 86 neurons. In the scale of single neurons, the mech-
anism of active potential is well understood. Yet at the ensemble level, things could get
quite complicated. The most I’ve heard from neuroscience practitioners is that we don’t
even where to look for.

We do not aim nor hope to understand the brain’s operation mechanisms through fMRI.
Rather, we show what is revealed of such mechanism by the fMRI scans - the spatial and
temporal patterns of the tens of thousands of BOLD time series in a disciplined manner, and
shed light on how to design further experiments to test our hypothesis on a finer scope.

But what amounts to a pattern? Many, like [3, Bullmore et al. 2012], proposed hypothesis
based on the "patterns" extracted from fMRI scans. Pearson correlation of time series is
blindly used to construct graph representations. Yet none has done a careful analysis of the
implication of such measures. Similar cases are countless.

To us, the patterns that differentiate two or more conditions are a more reliable means to
study the fMRI scans. These are the patterns to help us distinguish when

• Seeing a picture of a house versus a face
• Recognizing a concrete word versus an abstract concept
• Anticipating a potential threat or not

Traditionally such patterns are found with unsupervised learning. The researcher picks up
a specific aspect of the data (spatial or temporal) and learn some specific decomposition

(PCA, ICA, etc.). He would then look into the learned representation, transform the data
and perform statistical test of significance. If p < 0.05, he will start to find a neuroscience
interpretation.

This process is not scalable with respect to the shear number of combinations. It is also
unnecessarily tedious for exploration. Instead, we can consider generating many features
from both a neuroscience perspective and the data, and perform supervised learning to
retain those that consistently distinguish the conditions. This has also the advantage of
revealing added strength of multiple different features. Furthermore, the significant of a
highly generalizable model is self-evident - we do not have to lean on a specific statistical
test with complicated set of assumptions that we can’t easily verify.

With a small subset of feature selected, we can go ahead an look closely into why they are
predictive. If we found a group regions (say, V1, MT and PFC) are significant, we should pull
up their associated time series and study

• The temporal correlation structure and spectrum
• The variance among spatially contiguous voxels / vertices within the region

Fourier / Gabor transform, wavelet and Gaussian process are suitable for such task.

1.0.1 The Big Small Data

Our hands are tight with very small dataset. With a 20 people experiment, we have at best
about 100 data points at all. Almost all the learning algorithms have fail (SVM, Random
Forest, LASSO, etc.) on the raw voxel variables. Yet the size of each participant’s collected
data easily crosses the gigabyte boundary.

The Human Connectome Project (HCP) is an exception. How to leverage what we learn
from a large dataset like HCP to smaller ones?

On a individual level, we have access to

• Cortical surface thickness, local area, curvature, myelin map, etc.
• Gene expression level (Allen brain atlas)

There are also many public accessible fMRI datasets and derivatives

• OpenfMRI (https://openfmri.org)
• The NITRIC datasets (http://www.nitrc.org)
• OBHM Hackathon (http://ohbm-seattle.github.io)
• BrainMap (http://www.brainmap.org)
• Neurosynth http://neurosynth.org

Can we leverage all of them to train more effective learning algorithms? Can we efficiently
search the result from literature to corroborate our findings?

The available fMRI data pile up to tens of terabytes, consisting of a multitude of different
formats and structures. How to effectively process them into multiple levels of represen-
tations to facilitate fast query and visualization is by no means an easy task. (It takes more
than two thousand lines of code cross four different languages to transform the HCP dataset
into the format for analysis and visualization).

2 FMRI, A Primer

Magnetic Resonance Imaging (MRI) is one of the the predominant means to obtaining in-
formation of the brain in-vivo.

In a typical neuro-imaging study, about 20 to 40 people participate by performing several
experimental tasks in the MRI scanner. These tasks include

2

http://help.brain-map.org/display/humanbrain/Documentation
https://openfmri.org
http://www.nitrc.org
http://ohbm-seattle.github.io
http://www.brainmap.org
http://neurosynth.org

• watching a video clip
• listening to some auditory content
• reading text
• performing simple actions like squeezing hands / toes
• answering multiple choice questions
• receiving mild electrical shock

The external inputs to the experiment participant are termed stimuli. For a more specific
list of tasks, check out http://www.umiacs.umd.edu/~phi/hcp_dataset_slides.html.

There are also cases where participants are asked to simply stay still and neither perform
nor think of anything during the scan. These are called "resting-state" scans, which some
believe to be able to reflect what the brain does when it is not concentrated on anything [2,
Buckner et al. 2013].

For each participant, these data are collected

• "Functional" scan, consisting of several hundreds to more than a thousand "snap-
shot" of the brain during the experiment period. These "snapshots" are tuned to be
sensitive to the blood oxygenation level, which to some degree reflexes the under-
lying activities of the neuronal ensemble. Each "snapshot" usually takes a several
second to acquire (in our own experiments, 2.5s), although in some special cases
(the Human Connectome Project), it takes "only" 0.72s. The blood oxygenation level
decedent (BOLD) signals however do not have a very fine intrinsic time resolution,
so that’s about appropriate to acquire a good measurement. One usually have to
make a trade-off between spatial and temporal resolutions.

• Structural scan of the brain (higher spatial resolution) which is used to align data
from different participants to a common brain template so that we can perform
group level study. The structual scan are also important in its own right, especially
in the case when the goal is to study effects of diseases such as Alzheimer’s or
schizophrenia.

• Physiological data, including
– respiratory / cardiac rate
– head movements

which are useful to remove noise in the functional data.
• Participants’ responses to the task questions, if any.

The data go through preprocessing,

1. Removing noise related to high frequency physiological signals and scanner field
bias.

2. Alignments
(a) Align each "snapshots" of the functional scans into a common frame (the par-

ticipant moves during the experiment).
(b) Align the functional scans to the structural scan

3. Align and register the structural scan to a common brain template.

The human neo-cortex is a thin sheet of 6 layers. All the "functional" activities happens in
these gray matter (referring to its postmortem coloring) whereas the white matter accounts
for the physical wirings among the neurons. It is more popular these days to also extract
gray matter sheet as a 3D triangle mesh.

So optionally during the preprocessing, we

• Extract the cortical surface from the structural scan
• Project the functional scan to this surface

3

http://www.umiacs.umd.edu/~phi/hcp_dataset_slides.html

Figure 1: An example of the 3D cortical surface triangle mesh

• Align the register the triangle mesh to a common surface by cross-referencing the
landmarks of gyri, sulci and accounting for folding patterns.

So in the end, we have in our hand, a dataset of signals / time series indexed either by
their 3D voxel positions or the 3D vertex ID on the cortical surface. We know for each
participant, when the stimuli show up (onset) and the duration, by which we can refer to
the corresponding brain "responses" in the signals.

Typically one has as many as more than twenty thousand voxels or vertices. Each time
series indexed by a single voxel / vertex, however, has only about several hundred (regu-
larly sampled) time points of which only a rather small portion is related to the task. It is a
daunting task to find meaningful patterns within these large-p small-n data.

3 Time Series and Signal Processing

3.1 Finding Groups of Coherent Temporal Patterns

When the participant perform an attention demanding task, we would expect multiple
regions of the brain to be activated. Given that activated brain regions should generate
signals with similar shapes, we should find a large amount of time series in our dataset to
behave similarly during the task period.

In fMRI scan each individual has more than ten thousand voxel indexed time series. Find-
ing groups of similar time series among them is a daunting task.

Community detection [4, Crossley et al. 2013] is a common technique in the computa-
tional neuroscience literature to detect consistent patterns across different regions of inter-
est (ROI). A graph is generated over the set of ROIs where the edge weights is computed
from some pairwise similarity functions. A community is defined as a maximally similar set
of ROIs time series. Time series within the same community are highly similar than those
in other communities. Algorithms such as [6, Girvan and Newman 2002] is used to find
these communities.

4

Such methods are limited in that their usefulness rely heavily on the similarity function. It
is difficult to come up with a sufficiently good way to measure the similarity of time series
with rich dynamics regimes. Pearson correlation, the most commonly employed method,
often fails to capture non-linearly correlations 1.

To study the directly the properties of the BOLD time series, people would usually apply
variants of factor analysis methods such as principle component analysis (PCA) or inde-
pendent component analysis (ICA). Yet this either try to find a linear subspace to minimize
the reconstruction error (or to best explain the empirical variance) or to decompose the
data into statistically independent factors.

Our goal is to effectively learn a model to discover groups of time series with coherent
temporal patterns without imposing much structural assumptions a priori. A generative
clustering method is suitable to exploit the spatial locality of fMRI data - BOLD signals are
usually similar across adjacent voxels.

A Gaussian process [11, Rasmussen et al.2006] defines a prior distribution over the space
of functions. Its finite dimensional marginal distribution is multivariate Gaussian, making
it very flexible to be combined in a mixture model. As a mechanistic model, we can assume
that the BOLD time series are generated from a mixture of Gaussian processes.

One common problem for mixture model is the need to determine the number of compo-
nents K. Algorithms such as k-means will dutifully find K components even if the data
disagree. Dirichlet process mixture allows us to learn the number of components from the
data.

Dirichlet mixture of Gaussian processes have been successfully applied to study different
dynamics regimes of time series [8, Meeds et al. 2006] [12, Rasmussen et al. 2002]. Similar
to us, [14, Ross and Dy 2013] developed a nonparametric Dirichlet mixture of Gaussian
processes for clinical studies.

The paper is organized as follows. We first give a brief review on Gaussian process and
Dirichlet process in the first two sections. After that we describe our mixture model and
algorithm settings. In the experiment section, we show the properties of the models learned
via variational inference in a fMRI dataset.

3.1.1 Gaussian Process

A Gaussian process is a stochastic process with index set X. Under this model, the data y is
assumed to be generated from a latent function which follows Gaussian process with mean
m and a covariance structure defined by a positive semi-definite kernel k : X×X → R.

y = f(x) + ϵ

ϵ ∼ N(0, δ2
n)

f ∼ GP(m(x),k(x, x ′))

Notice that the correlation of the functions are solely determined by their input values [11,
Rasmussen 2006]. Gaussian process can be marginalized at a finite subset {x1, . . . , xn} ⊂ X,
resulting in a multivariate normal distribution

N(µ,K) where µi = m(xi) and Ki,j = k(xi, xj)

Thus for a finite sample y1, . . . , yn, sampled at such points, we can easily integrate out the
latent function f and obtain the marginal log-likelihood as

logp(y | X) = −
1
2
(y− µ)T (K+ δ2

nI)
−1(y− µ)−

1
2

log
(∣∣∣K+ δ2

nI
∣∣∣
)
−

n

2
log 2π.

Since our prior and likelihood are both Gaussian distribution, the posterior is also Gaus-
sian.

1DEFINITION NOT FOUND.

5

3.1.2 Dirichlet Process

Dirichlet process can be defined with respect to the conditional predictive distribution as
follows. Given a finite sample η1,η2, . . . ,ηn, where ηi follows some distribution G0,

ηi = η | η1, . . . ,ηi−1 ∼
1

i− 1 +α

i−1∑

j=1

δ(ηj) +
α

i− 1 +α
G0

Here G0 is our GP prior. The right hand side is a valid probability measure since it is a con-
vex combination of a finite number of probability measures. Notice that previously chosen
values of η will have a non-zero probability to be chosen, even if the base measure G0 is
continuous. Thus we can use this concentration on discrete value property for clustering.

3.1.3 Dirichlet Process Mixture of Gaussian Processes

Equivalently, one can directly take the mixture of component perspective and introduce
a latent cluster assignment variable. In this case, we first sample this categorical random
variable through an infinite stick-breaking process [1, Blei and Jordan 2006] and sample
the η for each mixture component from G0 the base measure. This perspective allows us
to derive an efficient mean-field variational inference algorithm to estimate the posterior [1,
Blei and Jordan 2006].

In our case, each mixture component is a Gaussian process. Since all the time series are
measured on the (approximately) same time point, we only have to work with the finite
marginalized Gaussian processes. We use the Dirac delta kernel with a modulation factor
k(x, x ′) = h(x)δ(∥x− x ′∥)h(x ′). The finite marginalized version is simply a multivariate
Gaussian with an anisotropic diagonal covariance matrix. The rationale is to not to assume
any specific property of the time series and to allow heteroskedasticity in the time domain.
We let G0 to be an inverse Gamma distribution.

3.1.4 Experiments

We performed experiment on a single subject from the Human Connectome Project. The
tfMRI data of the left hemisphere from a single run of the language task is taken. During
the task, the subject is presented with auditory stimuli of either a story or a simple math
problem. The subject is given a multiple choice problem related to the content after each
stimulus is presented. The dataset consists of 29696 time series, each contains 316 time
points.

We have performed experiments on both original and scaled data (normalized time series).
In fig-1 we show the number of activated components with respect to α. We performed
truncated stick breaking with a multinomial distribution (listed as sim). In both experiments
we set α = 1.23.

1. Original Data The algorithm picked up 15 components, among which 10 are as-
sociated with more than 1000 time series. The rest 5 components shows clearly a
pattern of random noise. The mean time series of the 10 non-noise components
have basically the same shape, but different mean scale, as can be seen in fig-2.
We choose the component whose time series has the largest mean scale. The areas
mostly reside in this component are superior frontal, rostral middle frontal, superior
temporal and insula as is listed in the Deskikan-Killiany cortical parcellation. All this
are related to cognitive and auditory processing. The local maxima and minima in
this time series aligns well with the onset of stimuli, as is seen in fig-3.

2. Scaled Data Although the model learned on the original data shows a globally
salient temporal pattern, it is nonetheless affected by the absolute scale of each
individual time series. To show the association of the temporal variations, we per-
formed a second group of experimentation with each time series mean subtracted
and variance scaled.
We have trained the model over a range of α. The number of components grows
as α gets larger, but eventually saturates at around 50.

6

Figure 2: Number of activated components with respect to α.

Figure 3: The 10 mean time series normalized, showing strong overlapping (best viewed
in color).

We show in the appendix the plot of all component mean time series in this model.
A few of the components have very similar mean time series, which is reflected in
fig-5. A very small Pearson correlation based distance indicates high similarity.

Figure 4: A mean time series chosen by the model. Yellow and red vertical lines stands for
the onset of a math or story event respectively

7

As a result, one could optionally group the components among which the distances
are tiny.

Figure 5: A component mean time series well aligned with stimuli onset

Similar to the experiment on original data, we find a component whose mean time
series is very well aligned with the auditory stimuli onset. This component con-
tains 354 elements, with a majority residing in superior temporal , supramarginal and
transverse temporal, all of which are important functional components in language
and auditory processing. The alignment with event onset and the component
mean time series is shown in fig-4.

Figure 6: Pearson correlation distance matrix of the learned mean time series in scaled data
at α = 1.23.

3.1.5 Conclusion

We have proposed a Dirichlet process mixture of Gaussian processes model as an ex-
ploratory tool to study fMRI BOLD time series. We have demonstrated its ability to empir-
ically finding interesting temporal patterns in a language related cognitive task. Further

8

study should exploit the intrinsic low frequency nature of BOLD signals and construct a
more detailed model to encode both that and the high frequency noise. Faster variational
inference algorithms such as [7, Hensman et al. 2012] and well optimized implementations
could potentially speed up the computation.

3.2 Effective Gaussian Process Kernel Learning

What if we want to mixture model to pick up more complicated temporal patterns? Con-
sider a more simplified case where we have a total of m time series generated from the
same Gaussian process independently. How could we effectively learn the covariance ker-
nel from these?

We observe that the finite sample marginal of a Gaussian process is a multivariate Gaussian
distribution. Consider the Borel σ-algebra of the Rn where n is the number of samples in a
time series. The theory of Reproducing kernel Hilbert space tells us that with a suitable kernel
(here we use Weiestrass), we can construct a Hilbert space H where the kernel serves as a
evaluation kernel (like Dirac delta for L2). Furthermore, elements in H is dense in the space
of bounded continuous random variables of the measurable space (Rn,B(Rn)). To show
that two distribution p,q in (Rn,B(Rn)) are "equal", it suffices to show that their mean
functional is in the bounded linear functional of H and that the expectation of all elements
in H for p,q are equal. A metric termed Maximum Mean Discrepancy (MMD) computes the
largest distance between p,q for elements in H.

Figure 7: Flow chart of Gaussian process kernel learning

Let’s consider the case in MMD(p,q) where the distribution p is only available through its
samples. Denote the empirical distribution as p̂. We can then rewrite the formula as

MMD(p̂,q) = Es,s ′
[
k(s, s ′)

]
− 2Es,t [k(s, t)] + Et,t ′

[
k(t, t ′)

]
,

where (s, s ′) ∼ p̂ × p̂, (t, t ′) ∼ q × q and k is the Weierstrass kernel. We will take this
quantity as a function of q(θ) and minimize it.

Notice that the first term is only related to the samples, which could be ignored for the
optimization. The second term could be considered as interaction between the samples
and q(θ). The last one is to be treated as a regularization term for the parameters. We can
write it as a function of the parameters as

Lw(θ, Y) = −
2
m

m∑

i=1

Ey [k(yi, x)] + g(θ).

Let f be the multivariate Gaussian density. According to the formulae derived in the last
section,

Lw(θ, Y) = −
2
m

m∑

i=1

Ey [k(yi, x)] + g(θ),

= −
2
m

m∑

i=1

W(f)(yi) +

∫

X
f(t)W(f)(t)dt

= −
2
m

√
1

(2π)n |2I+Ky|

m∑

i=1

exp

(
−

1
2
(yi − µ)T (2I+Ky)

−1(yi − µ)

)
+

√
1

(4π)n |I+Ky|
.

9

In 1D, the formula could be written as follows.

Lw(µ, δ2, Y) =

√
1

4π(1 + δ2)
−

2
m

√
1

2π(2 + δ2)

m∑

i=1

exp

(
−

1
2
(yi − µ)2/(2 + δ2)

)
.

Notice that in the case of a normal distribution, the regularization term is independent of
the mean. The figure shows the empirical Lw with respect to a sample size of 300 drawn
from a standard normal distribution (µ = 0 and δ = 1). We manually set the mean µ = 0
and tested a range of δ values shown in the horizontal axis. The loss function clearly
achieved the minimum value at δ = 1. Furthermore, for the standard normal distribution,
we can expect the empirical estimation of the first term to be about 0.1995, by substituting
δ = 1 to the second term. With this we can estimate how close the distribution we sampled
from is to the best possible normal distribution estimation by the theorems in the previous
session.

Figure 8: Loss function under standard normal distribution

Moreover, the plot indicates that the loss function is neither convex nor concave. Yet it
is tempting to check its monotonicity before and after the minimum point. We could in
general use Newton’s method if, like in this case, the loss function has an closed form.
It might also be useful to utilize that fact that Weiestrass transform can be approximated
arbitrarily well with an analytical function (that is, functions given by complex

4 High Performance Cloud Computing

To build a system capable of learning complex patterns and relationships, we must be able
to build and maintain robust and high performance computing systems.

Querying over hundreds of millions of time series is challenging. HCPY is a software pack-
age to help us navigate terabytes of neuro-imaging data in real time.

Design criteria

• Must run in any reasonable Linux distribution
• Allow data integrity checking

10

• Allow identification of problems in data (original or intermediary)
• Scalable to many compute nodes
• Elastic to node churns (sudden addition and removal of nodes)

The design principle is to separate these parts of system and try to maintain a relative
low coupling among them. For the long running code, logging to text file is sufficient and
necessary. It allows any program or human beings to monitor its progress. In addition,
when the job is done or failed, the program should generate another file to indicate the
status. A program could launch the job and use this indicator file to determine the exit
status of the job. And that’s all that is needed.

The working environment is as follows. We have a handful of servers managed by our-
selves. The code could run there as long as the machine is online. There are several man-
aged cloud computing infrastructures on campus, notably

• CHIMERA: our main dev-cluster, usually can acquire up to 4 nodes.
• BISWIFT: mostly available. No GPU.
• DEEPTHOUGHT2: best equipped, mostly occupied, but there is a scavenger queue for

a quick job. A small number of K20c GPUs are available.

The dataset is physically stored in a NAS server running FreeNAS, a modified version of
FreeBSD. The data access functionalities are abstracted with a python module (to provide
"soft" access control).

We have to try to keep enough data in memory. The extracted data are kept in highly
compressed format to save space. Uncompressing these files take a long time. Since each
database client instance usually has to handle more of these files than the number of avail-
able cores, it is reasonable to spawn for each file a subprocess for decompression.

Once a query is submitted, the system is expected to pull all the data necessary for that
query, further process them, and return the result (could still be big) into the client side.

Pulling data from remote site could be time consuming. We would like to first download
all or part of the data into the local file. Since the remote site only stores the data, not any
processing logic, further filtering has to be done locally. For the moment we assume that
after this step all the data related to the query could be stored locally on the distributed
compute nodes.

MPI is used as resource manager and database bootstrapping mechanism. This is because
MPI and specifically the Open-MPI implementation is adaptive to most interconnected
computers with some Linux distributions. A simple master server type of job queue is
all that we need. During a large batch job such as preprocessing or information retrieval
from the original data, problem is likely to occur.

Most queries request going through all the data. Yet not all of them require a sustained
period of time. In this case we can scavenge the compute nodes in the spot job queues to
accelerate the query.

The MPI processes must be able to communicate with the underlying processing workers.
This is done through file system notification inotify. This will help reduce the coupling
of the sub-systems and also make the intermediary result accessible through normal file
operations from the shell.

5 Appendix

5.1 Fallacies

Computing the entropy and mutual information is not a matter of triviality.

Non-parametric - discretization Discretizing the continuous distribution is not quite a
good choice. The number of "bins" grows exponentially, outpacing the number

11

of samples. We should always expect many bins without any observations. It has
been shown by [10, Nemenman_NIPS_2002_Entropy-notes] that any choice of bins
and the corresponding Dirichlet type prior will largely determine the entropy dis-
tribution when the sample size is not large enough. This effect can be shown in
figure 9, where we obtained samples of different sizes from a normal distribution
with µ = 5 and δ = 7. The methods are all quite consistent, yet largely biased
towards log(K) where K is the number of bins used to discretize a finite support of
(−5+µ, 5+µ). This is analyzed in detail by [10, Nemenman_NIPS_2002_Entropy-
notes].

0 200 400 600 800 1000 1200

1.
6

2.
0

2.
4

Estimating entropy with K = 10 bins, log(K) = 2.3026

sample sizes

es
tim

at
ed

 e
nt

ro
py

ML
MM
Jeffreys
Laplace
SG
minimax
CS
shrink

0 200 400 600 800 1000 1200

2.
5

3.
5

4.
5

Estimating entropy with K = 20 bins, log(K) = 2.9957

sample sizes

es
tim

at
ed

 e
nt

ro
py

ML
MM
Jeffreys
Laplace
SG
minimax
CS
shrink

0 200 400 600 800 1000 1200

2.
0

3.
0

4.
0

Estimating entropy with K = 30 bins, log(K) = 3.4012

sample sizes

es
tim

at
ed

 e
nt

ro
py

ML
MM
Jeffreys
Laplace
SG
minimax
CS
shrink

Figure 9: Estimating entropy of normal distribution

Non-parametric - density estimation The discrete method is very unlikely to produce sat-
isfactory result, We consider taking an indirection by estimating the density func-
tion and then perform numerical integration.

Direct integration when the function is in R or R2 is efficient enough for practi-
cal concern. Yet for higher dimensions, the speed is unbearably slow (in many
seconds). This is due to the fact that evaluating the kernel density at any point
would result in n function value look-ups where n is the sample size. If the nu-
merical integration algorithm (quadrature) requires m function evaluations, the
total amount of time is then proportional to O(mn). A more efficient algorithm [9,
Morariu_2008_AOTFGS-notes] can be employed instead to bring down the cost to
O(m+n).

12

Figure 10: Empirical entropy estimation

As the dimension increases, the numerical integration becomes extremely time
consuming. We consider using Markov Chain Monte Carlo [13, Rizzo_2007_SCR-
bib] methods instead to approximate the integration. An overview of MCMC.
Quasi Monte-Carlo (QMC) [5, Dick_2013_HITQCW-notes] method might also be
an interesting way.

Non-parametric - k-Nearest-Neighbor We can use order statistics to derive a more reli-
able measure of entropy. This method is much less computationally intensive than
those using density estimation. We tested the algorithm on a two dimensional nor-
mal distribution in figure 11. Each iteration contains an 1000 samples, repeated 30
times. The distribution has a covariance of this form

[1 ρ
ρ 1

]
. It can be seem from

the figure that with only a small correlation, the difference in mutual information is
not pronounced and thus not easy to detect. This is due to the fact that the mutual
information for normal distribution is computed as − log(1 − ρ2)/2.

5.2 Physics of MRI

A magnetic field is enacted. Longitudinal (parallel, Z) and transversal (perpendicular, XY)
magnetization of nuclei. A radio frequency pulse is used to align the phase and ’tip over’
the nuclei (hydrogen atom). The direction of the spinning nuclei is in a "circular" fashion.
When the nuclei are aligned to the magnetic field, their circular frequency is called Larmor
frequency.

Relaxation:

• Longitudinal: the restoration of net magnetization along the Z direction. The rate
is characterized by the exponential distribution with T1. T1 is the time that 63% of
the max longitudinal magnetization level is reached.

• Transversal: the loss of net magnetization in the XY plane due to lost of phase
coherence (induced by the RF pulse). The rate is characterized by the exponential

13

http://www-scf.usc.edu/~mohammab/sampling.pdf

Figure 11: Empirical mutual information estimation with kNN

distribution with T2. T2 is the time till we have 37% of the magnetization in the
transversal direction. Its values are from 40 to 200 ms depending on the tissue.
This is usually ten time smaller than that of T1.

• T2∗ is the combined effect of T2 and local inhomogeneities in the magnetic field.

Different structures has different relaxation time.

structure T1 T2 T2*
white matter 600
gray matter 1000
CSF 3000

The imaging technique uses the following parameters

• TR: how often we excite the nuclei.
• TE: how soon after the excitation do we begin to collect data.

Thus the BOLD signal measured is approximately

M0(1 − e−TR/T1)e−TE/T2 .

TR \ TE small large
small T1 weighted garbage
large protein density T2 weighted

MRI acquired typically in axial slices, in a interlaced manner (odd number slices preceding
even number ones). For a reference to the terminologies, check out the coursera video
https://class.coursera.org/fmri-001/lecture/

14

https://class.coursera.org/fmri-001/lecture/

6 References

[1] David M. Blei and Michael I. Jordan. “Variational inference for Dirichlet process mix-
tures”. In: Bayesian Analysis 1.1 (Mar. 2006), pp. 121–143. DOI: 10.1214/06-BA104.

[2] Randy L Buckner, Fenna M Krienen, and BT Thomas Yeo. “Opportunities and lim-
itations of intrinsic functional connectivity MRI”. In: Nature neuroscience 16.7 (2013),
pp. 832–837.

[3] Ed Bullmore and Olaf Sporns. “The economy of brain network organization”. In:
Nature Reviews Neuroscience 13.5 (2012), pp. 336–349.

[4] Nicolas A. Crossley et al. “Cognitive relevance of the community structure of the
human brain functional coactivation network”. In: Proceedings of the National Academy
of Sciences 110.28 (2013), pp. 11583–11588. DOI: 10.1073/pnas.1220826110.

[5] Josef Dick, Frances Y. Kuo, and Ian H. Sloan. “High-dimensional integration: The
quasi-Monte Carlo way”. In: Acta Numerica 22 (May 2013), pp. 133–288. ISSN: 1474-
0508. DOI: 10.1017/S0962492913000044.

[6] Michelle Girvan and Mark EJ Newman. “Community structure in social and bi-
ological networks”. In: Proceedings of the National Academy of Sciences 99.12 (2002),
pp. 7821–7826.

[7] James Hensman, Magnus Rattray, and Neil D. Lawrence. “Fast Variational Inference
in the Conjugate Exponential Family”. In: Advances in Neural Information Processing
Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 2888–2896.

[8] Edward Meeds and Simon Osindero. “An alternative infinite mixture of Gaussian
process experts”. In: Advances In Neural Information Processing Systems. 2006, pp. 883–
890.

[9] Vlad I Morariu et al. “Automatic online tuning for fast Gaussian summation.” In:
NIPS. 2008, pp. 1113–1120.

[10] Ilya Nemenman, Fariel Shafee, and William Bialek. “Entropy and inference, revis-
ited”. In: Advances in neural information processing systems 1 (2002), pp. 471–478.

[11] Carl Edward Rasmussen. Gaussian processes for machine learning. Adaptive Computa-
tion and Machine Learning. The MIT Press, 2006.

[12] Carl Edward Rasmussen and Zoubin Ghahramani. “Infinite mixtures of Gaussian
process experts”. In: Advances in Neural Information Processing Systems 14. The MIT
Press, 2001, pp. 881–888.

[13] Maria L Rizzo. Statistical Computing with R. CRC Press, 2007.
[14] James Ross and Jennifer Dy. “Nonparametric Mixture of Gaussian Processes with

Constraints”. In: Proceedings of the 30th International Conference on Machine Learning
(ICML-13). Ed. by Sanjoy Dasgupta and David Mcallester. Vol. 28. 3. JMLR Workshop
and Conference Proceedings, May 2013, pp. 1346–1354.

15

http://dx.doi.org/10.1214/06-BA104
http://dx.doi.org/10.1073/pnas.1220826110
http://dx.doi.org/10.1017/S0962492913000044

	Introduction
	The Big Small Data

	FMRI, A Primer
	Time Series and Signal Processing
	Finding Groups of Coherent Temporal Patterns
	Gaussian Process
	Dirichlet Process
	Dirichlet Process Mixture of Gaussian Processes
	Experiments
	Conclusion

	Effective Gaussian Process Kernel Learning

	High Performance Cloud Computing
	Appendix
	Fallacies
	Physics of MRI

	References

