Construction of Composite Numbers by Recursively Exponential Numbers

SZE, Tsz Wo

November 23, 2005

Introduction 1

In this paper, we give some constructions of composite numbers N, such that every number less than or equal to M divides N. Therefore,

$$lcm(1, 2, 3, \dots, M) | N.$$

We call such numbers divisible up to M.

Definition 1.1. An integer N is divisible up to M if $n \mid N$ for all $0 < n \le M$.

A trivial construction is N=M!. However, it requires an enumeration of all prime numbers less than or equal to M. The constructions given in this paper do not require such enumeration.

In section 2, we present a family of constructions of the composite number $D_{r,k}$, where $D_{r,k}$ is divisible up to $2^{k-1}-1$ for any positive integer r. The factoring problem is discussed in section 3. The problem of computing $D_{r,k}$ mod n is closely related to the factoring problem. They are probably equivalent.

Numbers of the form $r^E - E$, where $E = r^{r^{\cdot,\cdot'}}$

Let $r \in \mathbb{N} = \{1, 2, \dots\}$. Define recursively exponential numbers, $E_{r,k}$, to be

$$E_{r,-1} = 0,$$
 (2.1)
 $E_{r,k} = r^{E_{r,k-1}} \text{ for } k \ge 0.$ (2.2)

$$E_{r,k} = r^{E_{r,k-1}} \text{ for } k \ge 0.$$
 (2.2)

Let $D_{r,k}$ be the difference between $E_{r,k}$ and $E_{r,k-1}$, i.e.

$$D_{r,k} = E_{r,k} - E_{r,k-1} \text{ for } k \ge 0.$$
 (2.3)

 $D_{r,k}$ can be evaluated by the recursive equation below.

$$D_{r,k} = E_{r,k-1}(r^{D_{r,k-1}} - 1) \text{ for } k \ge 0.$$
 (2.4)

Table 2.1 shows some values of $E_{r,k}$ and $D_{r,k}$. $E_{r,k}$ and $D_{r,k}$ grow repidly. Obviously, $E_{r,k}$ divides $E_{r,k+1}$ for $k \ge 1$. The divisibe relationship also holds for $D_{r,k}$. We have the following proposition.

k	$E_{2,k}$	$D_{2,k}$	$E_{3,k}$	$D_{3,k}$	 $E_{r,k}$	$D_{r,k}$
0	1	1	1	1	 1	1
1	2	1	3	2	 r	r-1
2	4	2	27	24	 r^r	$r^r - r$
3	16	12	7625597484987	7625597484960	 r^{r^r}	$r^{r^r} - r^r$

Table 2.1: Examples of $E_{r,k}$ and $D_{r,k}$

Proposition 2.1. For r > 1 and $0 \le a < b$,

$$D_{r,a} \mid D_{r,b}. \tag{2.5}$$

Proof. It is enough to show $D_{r,k} \mid D_{r,k+1}$ for $k \geq 0$. Then, the theorem follows.

We show it by induction. $D_{r,0} = 1$ divides $D_{r,1} = r-1$. Assume $D_{r,k-1} \mid D_{r,k}$. For k > 0, let $D_{r,k} = nD_{r,k-1}$ for some integer n. By equation 2.4,

$$D_{r,k+1} = E_{r,k}(r^{D_{r,k}} - 1)$$

$$= E_{r,k}(r^{nD_{r,k-1}} - 1)$$

$$= E_{r,k}(r^{D_{r,k-1}} - 1)(r^{(n-1)D_{r,k-1}} + r^{(n-2)D_{r,k-1}} + \dots + 1).$$

Obviously, $E_{r,k-1} \mid E_{r,k}$. Therefore, $D_{r,k} = E_{r,k-1}(r^{D_{r,k-1}} - 1)$ divides $D_{r,k+1}$.

The next proposition helps to show $D_{r,k}$ is divisible up to $2^m - 1$ for some m in later sections. The Euler's totient function is denoted by $\phi(n)$, which is the number of positive numbers less than or equal to n and prime to n. ord_n(r) denotes the order of r in the ring \mathbb{Z}_n .

Proposition 2.2. Let r > 1 be an integer. Suppose the following hypotheses.

- (i) 6 divides $D_{r,b}$ for some $b \geq 2$.
- (ii) If, for some $k \geq 2$, every k-bit integer divides $D_{r,b+k-2}$, then $\phi(a)$ divides $D_{r,b+k-2}$ for $2^k \leq a < 2^{k+1}$ with $\gcd(r,a) = 1$,

Then, for any $n \in \mathbb{N}$, if $n < 2^m$, then $n \mid D_{r,b+m-2}$.

Proof. Let $n = \prod_{i=0}^l p_i^{e_i}$ be a factorization of n, where p_i are distinct primes. Consider the case that all p_i divides r. $\sum_{i=0}^l e_i < m$ since $n < 2^m$. Then, $n \mid r^{m-1}$. It is clear that $r^{m-1} \mid E_{r,m-1}$. With equation (2.4), $n \mid D_{r,m}$. By proposition 2.1, $n \mid D_{r,b+m-2}$.

The other case is proven by induction. For m=2, 6 divides $D_{r,b}$ by hypothesis (i). The theorem is true for m=2. Assume all k-bit numbers divide $D_{r,b+k-2}$ for some $k \geq 2$. Since $D_{r,b+k-2} \mid D_{r,b+k-1}$ by proposition 2.1, it is enough to show $n \mid D_{r,b+k-1}$ for $2^k \leq n < 2^{k+1}$.

If gcd(r, n) > 1, write n = st, such that gcd(r, t) = 1, t > 1 and each prime factor of s divides r. s > 1 implies $t < 2^k$. Similarly, t > 1 implies $s < 2^k$. Then, $s \mid D_{r,b+k-2}$ and $t \mid D_{r,b+k-2}$ by induction assumption. gcd(s,t) = 1 implies $st \mid D_{r,b+k-2}$. Therefore, $n \mid D_{r,b+k-1}$ by proposition 2.1.

For the case that gcd(r, n) = 1, $\phi(n) \mid D_{r,b+k-2}$ by hypothesis (ii). We have $\operatorname{ord}_n(r) \mid \phi(n)$ as a consequence of Lagrange's theorem. Together with the fact $n \mid (r^{\operatorname{ord}_n(r)})^c - 1$ for any positive integer c, we have n divides $E_{r,b+k-2}(r^{D_{r,b+k-2}} - 1)$ 1) = $D_{r,b+k-1}$.

The case r=2

In this section, $E_{2,k} = 2^{2^{k-2}}$ is denoted by E_k and $D_{2,k} = E_k - E_{k-1}$ is denoted

by D_k . The sequences $\{E_k\}_k$ and $\{D_k\}_k$ are known as Sloane's A14221 and A038081 [4]. D_k also is the number of rooted identity trees of height k and the number of sets of rank k.

2.1.1 Ackermann function

 E_k and D_k can be evaluated by Ackermann function. Ackermann function A(m,n) is defined by

$$A(m,n) = \begin{cases} n+1 & \text{if } m = 0, \\ A(m-1,1) & \text{if } m > 0 \text{ and } n = 0 \\ A(m-1,A(m,n-1)) & \text{if } m > 0 \text{ and } n > 0. \end{cases}$$

It can be shown that $A(4,n) = \underbrace{2^{2^{\cdots^{-2}}}}_{n+3} -3$. Therefore, for $k \geq 4$,

$$E_k = A(4, k - 3) + 3 (2.6)$$

$$E_k = A(4, k-3) + 3$$

$$D_k = A(4, k-3) - A(4, k-4).$$
(2.6)
(2.7)

2.1.2 Divisibility of D_m

 D_{m+1} is divisible up to 2^m-1 , which is a special case of theorem 2.8. In other words, all m-bit positive integers divide D_{m+1} . The table below shows the factorization of D_m for the first few cases. It is clear that the factorization of D_m contains all primes up to $2^{m-1} - 1$.

m	E_m	D_m	Factorization of D_m
0	1	1	1
1	2	1	1
2	4	2	2
3	16	12	$2^2 \cdot 3$
4	65536	65520	$2^4 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$
5	2^{65536}	$2^{65536} - 65536$	$2^{16} \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13^2 \cdot 17 \cdot 19 \cdot 29 \cdot 31$ $\cdot 37 \cdot 41 \cdot 43 \cdot 53 \cdot 61 \cdot 71 \cdot 73 \cdot 79 \cdot 97 \cdots$

Table 2.2: Factorization of D_m

The factorization of D_5 almost contains all the primes up to $2^5 = 32$. Only 23 is missing. The reason is that we have

In order to have $23 \mid D_m$, $23 \mid 2^{D_{m-1}} - 1$ by equation 2.4, which implies $11 \mid D_{m-1}$. Similarly, $11 \mid 2^{D_{m-2}} - 1$ by equation 2.4. Then, $10 \mid D_{m-2}$. $10 = 2 \cdot 5$ implies $2 \mid E_{m-3}$ and $5 \mid 2^{D_{m-3}} - 1$. Then, $4 \mid D_{m-3}$, which implies $4 \mid E_{m-4}$ and $m-4 \geq 2$. Therefore, $m \geq 6$.

2.1.3 Sophie-Germain primes

A positive integer p is a Sophie-Germain prime if both p and 2p+1 are primes. Since $\operatorname{ord}_{2p+1}(2) \neq 2$ for Sophie-Germain prime p, $\operatorname{ord}_{2p+1}(2) = p$ or $\operatorname{ord}_{2p+1}(2) = 2p$. If $p \not\mid D_k$, $2p+1 \not\mid 2^{D_k}-1$, which implies $2p+1 \not\mid D_{k+1}$. This idea is used to prove theorem 2.4 below.

Definition 2.3. A sequence of primes, p_1, p_2, \dots, p_n , is called a Sophie-Germain chain if $p_{k+1} = 2p_k + 1$ for $k = 1, 2, \dots, n-1$.

Theorem 2.4. Let p_1, p_2, \dots, p_n be a Sophie-Germain chain. For m > 2, $p_1 \mid D_m$ if and only if $p_n \mid D_{m+n-1}$.

Proof. It is enough to show the case n=2. Then, the theorem follows by induction.

It is obvious that $4 \mid D_m$ for m > 2. If $p_1 \mid D_m$, $D_m = 2p_1t$ for some integer t. Then,

$$D_{m+1} = E_m(2^{D_m} - 1)$$

$$= E_m(2^{2p_1t} - 1)$$

$$= E_m(2^{2p_1} - 1)(2^{2p_1(t-1)} + 2^{2p_1(t-2)} + \dots + 1).$$

 $\operatorname{ord}_{p_2}(2)$ divides $\phi(p_2)=2p_1$. Therefore, $2^{2p_1}\equiv 1\pmod{p_2}$ and $p_2\mid D_{m+1}$.

If $p_2 \mid D_{m+1}$, then $p_2 \mid 2^{D_m} - 1$. $\operatorname{ord}_{p_2}(2)$ divides D_m . For being a Sophie-Germain chain, $p_2 \geq 5$. $\operatorname{ord}_{p_2}(2) > 2$ since $2^2 = 4 < 5$. $\operatorname{ord}_{p_2}(2)$ divides $\phi(p_2) = 2p_1$. Then, p_1 divides $\operatorname{ord}_{p_2}(2)$. Hence, p_1 divides D_m .

Remark: The theorem does not apply to the case m=2. It is because $D_2=2$, which cannot be written as $2p_1t$ when $p_1=2$.

For example, the sequence 5, 11, 23 is a Sophie-Germain chain. $5 \not\mid D_3$ implies $23 \not\mid D_5$ by theorem 2.4.

2.2 Divisibility of $D_{r,m}$ with r odd

In this section, we consider $D_{r,k}$ for positive odd r. If r=1, $D_{1,k}=0$ for all k>0. It is a degenerate case. Table 2.3 and 2.4 show the factorizations of some $D_{3,k}$ and $D_{5,k}$. Note that all 2-bit numbers divide both $D_{3,2}$ and $D_{5,2}$, all 3-bit numbers divide both $D_{3,3}$ and $D_{5,3}$. For $D_{5,3}$, even all 4-bit numbers divide it.

k	$E_{3,k}$	$D_{3,k}$	Factorization of $D_{3,k}$
0	1	1	1
1	3	2	2
2	27	24	$2^3 \cdot 3$
3	7625597484987	7625597484960	$2^5 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13 \cdot 41 \cdot 73 \cdot 6481$

Table 2.3: Factorization of $D_{3,k}$

k	$E_{5,k}$	$D_{5,k}$	Factorization of $D_{5,k}$
0	1	1	1
1	5	4	2^2
2	3125	3120	$2^4 \cdot 3 \cdot 5 \cdot 13$
3	5^{3125}	$5^{3125} - 3125$	$2^6 \cdot 3^2 \cdot 5^5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 31 \cdot 41 \cdots$

Table 2.4: Factorization of $D_{5,k}$

The results given in this section usually are one step better than the case of r even. It is because $D_{r,1} = r - 1$ is even, which provides 2 as a factor for the later values in the sequence. We show a divisibility theorem which tells that $D_{r,m}$ is divisible up to $2^m - 1$. Before presenting the theorem, we show there are enough factors of 2 in each $D_{r,m}$.

Proposition 2.5. For r odd, r > 1 and m > 0, if $2^k | D_{r,m}$, then $2^{k+2} | D_{r,m+1}$.

Proof. Since $D_{r,m} \mid D_{r,m+1}$ by proposition 2.1, the statement is equivalent to

$$4D_{r,m}$$
 divides $D_{r,m+1}$ for $m > 0$.

We prove it by induction.

For the base case, if $r \equiv 1 \pmod{4}$, 4 divides $r - 1 = D_{r,1}$. Then $4D_{r,0} = 4$ divides $D_{r,1}$. If $r \equiv 3 \pmod{4}$, $D_{r,1} = r - 1 \equiv 2 \pmod{4}$ and

$$D_{r,2} = r(r^{r-1} - 1)$$

$$\equiv r(r^{\frac{r-1}{2}} - 1)(r^{\frac{r-1}{2}} + 1)$$

$$\equiv 0 \pmod{8}.$$

Therefore, $4D_{r,1}$ divides $D_{r,2}$.

Assume $4D_{r,m-1}$ divides $D_{r,m}$ for some m > 1. Write $D_{r,m} = 2^k t$ with t odd and $k \ge 2$. $E_{r,m-1}(r^{D_{r,m-1}} - 1) = D_{r,m} \equiv 0 \pmod{2^k}$. Since $E_{r,m-1}$ is odd, $r^{D_{r,m-1}} \equiv s2^k + 1 \pmod{2^{k+2}}$, where s = 0, 1, 2 or 3.

$$r^{4D_{r,m-1}} \equiv (s2^k + 1)^4$$

$$\equiv s^4 2^{4k} + 4s^3 2^{3k} + 6s^2 2^{2k} + 4s2^k + 1$$

$$\equiv 1 \pmod{2^{k+2}}.$$

Then, $D_{r,m+1} = E_{r,m}(r^{D_{r,m}} - 1) \equiv 0 \pmod{2^{k+2}}$.

Corollary 2.6. For r > 1 and k > 0, if $r \equiv 1 \pmod{4}$, $2^{2k} \mid D_{r,k}$. For $r \equiv 3 \pmod{4}$, $2^{2k-1} \mid D_{r,k}$.

Proof. We prove it by induction. $4 \mid r-1 \text{ if } r \equiv 1 \pmod{4}$. $2 \mid r-1 \text{ if } r \equiv 3 \pmod{4}$. The base cases are true. The induction step follows from proposition 2.5.

Theorem 2.7. Let r be a positive odd integer. For any $n \in \mathbb{N}$, if $n < 2^m$, then $n \mid D_{r,m}$.

Proof. We prove it by showing it satisfies all the hypotheses in proposition 2.2 for b = 2. Then, the theorem follows.

For hypothesis (i), $D_{r,2}=r(r^{r-1}-1)$ is divisible by 2 since $r^{r-1}-1$ is divisible by 2. If $r\equiv 0\pmod 3$, $3\mid D_{r,2}$. Otherwise, $\operatorname{ord}_3(r)=1$ or $\operatorname{ord}_3(r)=2$ imply $\operatorname{ord}_3(r)\mid r-1$, which further implies $3\mid r^{r-1}-1$. Therefore, 6 divides $D_{r,2}$.

For hypothesis (ii), if a is even, $\phi(a) \leq \frac{a}{2} < 2^k$, then $\phi(a) \mid D_{r,k}$ by the assumption given in (ii). For odd a, $\phi(a) = 2^u v$ with $0 < u \leq k$, v odd and $v < 2^k$. $2^u \mid D_{r,k}$ since $2^k \mid D_{r,k}$ by corollary 2.6. $v \mid D_{r,k}$ by the assumption in (ii). Therefore, $\phi(a)$ divides $D_{r,k}$.

2.3 Divisibility of $D_{r,m}$ with r even

In this section, we prove the divisibility theorem when r is even. Table 2.5 and 2.6 show some factorizations of $D_{4,k}$ and $D_{6,k}$. Note that $D_{r,1} = r - 1$ must be odd. For r > 2, 2 is not the smallest prime dividing the first $D_{r,k} > 1$. We show $D_{r,m}$ is divisible up to $2^m - 1$. Like the proof of theorem 2.7, we prove the hypotheses of proposition 2.2 for b = 3 can be satisfied.

k	$E_{4,k}$	$D_{4,k}$	Factorization of $D_{4,k}$
0	1	1	1
1	4	3	3
2	256	252	$2^2 \cdot 3^2 \cdot 7$
3	4^{256}	$4^{256} - 256$	$2^8 \cdot 3^3 \cdot 5 \cdot 7^2 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37 \cdot 43 \cdot 73 \cdots$

Table 2.5: Factorization of $D_{4,k}$

k	$E_{6,k}$	$D_{6,k}$	Factorization of $D_{6,k}$
0	1	1	1
1	6	5	5
2	46656	46650	$2 \cdot 3 \cdot 5^2 \cdot 311$
3	6^{46656}	$6^{46656} - 46656$	$2^6 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 31 \cdot 43 \cdot 101 \cdot \cdots$

Table 2.6: Factorization of $D_{6,k}$

Theorem 2.8. Let r > 2 be a even integer. For any $n \in \mathbb{N}$, if $n < 2^m$, then $n \mid D_{r,m+1}$.

Proof. For hypothesis (i), $D_{r,3} = r^r (r^{r^r - r} - 1)$. $2 \mid D_{r,3}$ since r is even. If $r \equiv 0 \pmod{3}$, $3 \mid r^r$. Otherwise, $r^2 \equiv 1 \pmod{3}$. Then, $(r^2)^{\frac{r}{2}(r^{r-1}-1)} \equiv 1 \pmod{3}$ and $3 \mid r^{r^r - r} - 1$. Therefore, $3 \mid D_{r,3}$.

For hypothesis (ii), a is odd since r is even. $\phi(a) = 2^u v$ with $0 < u \le k$, v odd and $v < 2^k$. $2^u \mid D_{r,k+1}$ since, obviously, $2^k \mid D_{r,k+1}$. $v \mid D_{r,k+1}$ by the assumption in hypothesis (ii). Therefore, $\phi(n)$ divides $D_{r,k+1}$.

The theorem follows from proposition 2.2 with b = 3.

2.4 Convergence of $r^{r^{r}} \pmod{p}$

In [3], Ng showed by p-adic valuation that, for any prime p and any positive integer r, $\lim_{k\to\infty} E_{r,k} \pmod{p}$ exists. We use a different technique to prove a more general result, $\lim_{k\to\infty} E_{r,k} \pmod{n}$ exists for any n>1, and even evaluate the limit. We begin with a unified version of the divisibility theorem. Then, we show that $E_{r,k} \pmod{n}$ stabilizes for large k. At last, the limit is evaluated.

Theorem 2.9. Let n be a positive integer with $n < 2^m$. Then, $n \mid D_{r,m+1}$ for any positive integer r.

Proof. For r = 1, it is trivial. For the other cases, it follows by theorem 2.7 and 2.8.

Proposition 2.10. Let n be an integer with $1 < n < 2^m$ and r be a positive integer. Then, for any $k \ge m$,

$$E_{r,k} \equiv E_{r,m} \pmod{n}. \tag{2.8}$$

Proof. n divides $D_{r,m+1}$ by theorem 2.9. Then, by proposition 2.1, n divides $D_{r,j}$ for j > m+1. Hence, we have $E_{r,k} = \sum_{j=m+2}^k D_{r,j} + E_{r,m+1} \equiv E_{r,m+1} \pmod{n}$. The proposition follows.

Theorem 2.11. Let n be an integer with $1 < n < 2^m$ and r be a positive integer.

$$\lim_{k \to \infty} E_{r,k} \equiv E_{r,m} \pmod{n} \tag{2.9}$$

Proof. For $h \geq 0$, $E_{r,m+h} \equiv E_{r,m} \pmod{n}$ by proposition 2.10. Then,

$$\lim_{k \to \infty} E_{r,k} = \lim_{h \to \infty} E_{r,m+h} \equiv \lim_{h \to \infty} E_{r,m} = E_{r,m} \pmod{n}.$$

We will discuss how to compute $E_{r,m} \pmod{n}$ in section 3.1.

2.5 Partitionings of prime numbers

For k > 0, define subsets of prime numbers

$$\mathcal{P}_{r,k} = \{ p : p \text{ prime}, p \mid D_{r,k} \text{ and } p / D_{r,k-1} \}.$$
 (2.10)

Then, for r > 0, $\mathcal{P}_{r,1}$, $\mathcal{P}_{r,2}$, $\mathcal{P}_{r,3}$, \cdots is a partitioning of all prime numbers. With Birkhoff and Vandiver's theorem (proposition 2.12), we can show $\mathcal{P}_{r,k}$ is non-empty for r > 1 and k > 0, except the trivial case $\mathcal{P}_{2,1}$. Hence, we have a non-empty partitioning of primes for each r > 2.

Proposition 2.12. Let $V_n = a^n - b^n$ for some integers a, b with a > b > 0 and gcd(a, b) = 1. If $n \neq 2$ and $V_n \neq 2^6 - 1^6$, then there exists a prime p, such that $p \mid V_n$ and $gcd(p, V_d) = 1$ for all $d \mid n$ and d < n.

See [1] for the proof of proposition 2.12.

Theorem 2.13. $\{\mathcal{P}_{2,k}\}_{k>1}$ and $\{\mathcal{P}_{r,k}\}_{k>0}$ for r>2 are non-empty partitionings of primes.

Proof. For any r > 1 and any prime p with $p < 2^m$, p does not divide $D_{r,0} = 1$ and p divides $D_{r,m+1}$ by theorem 2.9. Therefore, $p \in \mathcal{P}_{r,k}$ for some $0 < k \le m+1$. Since $D_{r,a} \mid D_{r,b}$ for all a < b by proposition 2.1, $p \notin \mathcal{P}_{r,h}$ for $h \ne k$. Therefore, $\{\mathcal{P}_{r,k}\}_{k>0}$ is a partitioning of primes.

$$\mathcal{P}_{2,2} = \{2\} \text{ and } \mathcal{P}_{2,3} = \{3\} \text{ are non-empty. Let}$$

$$I = \{(r, k) \in \mathbb{N}^2 : k > 3 \text{ if } r = 2 \text{ and } k > 1, \text{ otherwise.} \}$$

We show $\mathcal{P}_{r,k}$ is non-empty for $(r,k) \in I$. For any r > 1 and k > 1, $D_{r,k-1} \neq 2$. For k > 3, $D_{2,k-1} \neq 6$. By propostion 2.12, for $(r,k) \in I$, there exists a prime q, such that $q \mid r^{D_{r,k-1}} - 1^{D_{r,k-1}}$ and $q \nmid r^d - 1^d$ for $d \mid D_{r,k-1}$ and $d < D_{r,k-1}$. $D_{r,k-2} \mid D_{r,k-1}$ and $D_{r,k-2} < D_{r,k-1}$ imply $q \nmid r^{D_{r,k-2}} - 1^{D_{r,k-2}}$. $q \nmid E_{r,k-2}$ since $q \mid r^{D_{r,k-1}} - 1$. Therefore, q divides $D_{r,k} = E_{r,k-1}(r^{D_{r,k-1}} - 1^{D_{r,k-1}})$, but not $D_{r,k-1} = E_{r,k-2}(r^{D_{r,k-2}} - 1^{D_{r,k-2}})$. $\mathcal{P}_{r,k}$ is non-empty. \square

2.5.1 Height function

It is natural to ask that given r > 1 and a prime p, how to find k, such that $p \in \mathcal{P}_{r,k}$? i.e. which partition p belongs to?

Definition 2.14. For r > 1, define the height function,

$$h_r: \mathbb{P} \to \mathbb{N}, \qquad p \mapsto k,$$
 (2.11)

such that $p \in \mathcal{P}_{r,k}$, where \mathbb{P} is the set of primes.

The problem is equivalent to finding the minimum k, such that p divides $D_{r,k}$ because $p \not\mid D_{r,j}$ for $j < h_r(p)$ and $p \mid D_{r,j}$ for $j \ge h_r(p)$. Definition 2.14 can be extended to any n > 1 as below.

Definition 2.15. For r > 1, define the height function,

$$h_r: \mathbb{N} \setminus \{1\} \to \mathbb{N}, \qquad n \mapsto k,$$
 (2.12)

such that $n \mid D_{r,k}$ and $n \mid D_{r,k-1}$.

}

}

Suppose $n < 2^m$. $h_r(n)$ can be computed by a binary search algorithm since $h_r(n) \le m+1$ by theorem 2.9.

```
\label{eq:Algorithm 2.16.} \begin{tabular}{l} Algorithm 2.16.} $\mbox{ heightByBinarySearch}(r,n)$ \\ { & set $lower=0$; \\ set $upper=m+1$; \\ while true \\ { & if $upper-lower=1$, return $upper$; \\ set $mid=\frac{1}{2}(upper+lower)$; \\ if $n\mid D_{r,mid}$ \\ & upper=mid$; \\ else \\ & lower=mid$; \\ } \end{tabular}
```

return $\max(a, \mathsf{heightByOrd}(r, d) + 1);$

The number of loops required before returning is $O(\log \log p)$. However, $p \mid D_{r,j}$ may not be determined efficiently for $j \leq m$ because $D_{r,j}$ can be much larger than p. We present another algorithm, heightByOrd, which does not query whether $p \mid D_{r,j}$, except for small j. From the example at the end of section 2.1.2, it suggests the following algorithm.

The number of recursion steps in heightByOrd is $O(h_r(n))$. Since $h_r(n) < \log_2 n + 2$ by theorem 2.9, the number of recursions is $O(\log n)$.

The algorithm requires computing $\operatorname{ord}_t(r)$, where $\operatorname{ord}_t(r)$ can be computed efficiently if the factorization of t can be computed efficiently. We will further discuss the factoring problem in section 3.

3 Factoring

We show that the factoring problem, denoted by FACTOR, is closely related to the problem of computing $D_{r,k}$ mod n, where the operation, mod n, returns the remainder of $D_{r,k}$ divided by n, which is a non-negative integer less than n. These two problems are probably equivalent. Thoughout this section, n is an m-bit number greater than 1.

3.1 Computing $D_{r,k} \mod n$

Computing $D_{r,k}$ mod n in general is difficult since $D_{r,k}$ can be huge for $k \in O(\log n)$. The problem of computing $D_{r,k}$ mod n is denoted by DMOD and, similarly, the problem of computing $E_{r,k}$ mod n is denoted by EMOD. We only consider $1 < r < n < 2^m$ and $k \ge 0$. We first show that DMOD and EMOD are polynomial-time equivalent. Then, we present an algorithm for EMOD.

Proposition 3.1. DMOD and EMOD are polynomial-time, in $\log n$, equivalent.

Proof. Given an algorithm solving EMOD, DMOD can be solved by,

$$D_{r,k} \mod n = ((E_{r,k} \mod n) - (E_{r,k-1} \mod n)) \mod n.$$

On the other hand, given an algorithm solving DMod, EMod can be solved as following. If k < m + 1,

$$E_{r,k} \mod n = \left(\sum_{j=0}^{k} (D_{r,j} \mod n)\right) \mod n.$$
 (3.13)

Otherwise, $k \ge m + 1$, by proposition 2.10,

$$E_{r,k} \mod n = E_{r,m} \mod n$$
,

which can be computed by equation (3.13).

Obviously, both transformations require $O(\log n)$ steps.

Algorithm 3.2. $\mathsf{EMod}(r,k,n)$

Computing $\operatorname{ord}_t(r)$ turns out to require factoring t. For $E_{r,k} \mod s$, if k is small, it can be computed directly, otherwise, $E_{r,k} \mod s = 0$. All other steps can be computed efficiently.

3.2 A factoring algorithm

We present a deterministic algorithm for factoring n, where n is a composite, m-bit number.

Proposition 3.4. Let p, q be distinct prime factors of n. If there exists $r_0 \le \lfloor \sqrt{n} \rfloor + 1$, such that $h_{r_0}(p) < h_{r_0}(q)$, then factor returns at $r \le r_0$.

Proof. Note that $D_{r,k} \mod n = 0$ for k > m by theorem 2.9. Therefore, $h_{r_0}(q) \le m$. Let $k_0 = h_{r_0}(p)$. $D_{r_0,k_0} = pt$ for some integer t. $\gcd(q,t) = 1$ since $q \not\mid D_{r_0,k_0}$. Then, $D_{r_0,k_0} \mod n = ps$ for some integer s with $\gcd(q,s) = 1$. Therefore, $\gcd(D_{r_0,k_0},n)$ is not equal to 1 or n. The algorithm returns at $r \le r_0$.

Proposition 3.5. If n is composite, factor(n) returns a non-trivial factor of n.

Proof. Clearly, if factor returns, it returns a non-trivial divisor of n. There exists a prime p, such that $p \mid n$ and $p < \lfloor \sqrt{n} \rfloor + 1$. Let $r_0 = p + 1$ and $k_0 = 1$. Then, $D_{r_0,k_0} = p$. factor returns at $r \le r_0$.

Suppose n=pq, where p,q are distinct primes with p<q. factor is not an interesting algorithm if it returns at r=p+1, since a naive factoring algorithm, which checks each prime for divisor of n in ascending order, has similar property. We hope that there is an r in $O(\log n)$, such that factor returns. It is the case if conjecture 3.6 below is ture. As a consequence, FACTOR and DMOD are polynomial-time equivalent.

For example, in The New RSA Factoring Challenge [2], RSA-160 = PQ, where

- P = 45427892858481394071686190649738831656137145778469793250959984709250004157335359.
- Q = 4738809060383201619663383230378895197326892292104095 7944741354648812028493909367.

We have $h_2(P) = 12$ and $h_2(Q) = 11$. Therefore, factor will return Q, although Q > P, when r = 2 and k = 11 in algorithm 3.3.

Conjecture 3.6. For any distinct primes p, q, there exists an r in $O(\log p + \log q)$, such that $h_r(p) \neq h_r(q)$.

Theorem 3.7. If conjecture 3.6 is true, FACTOR and DMOD are polynomialtime, in $\log n$, equivalent.

Proof. Given an algorithm solving DMOD in polynomial-time, algorithm 3.3 solves FACTOR in polynomial-time if conjecture 3.6 is true.

On the other hand, given an algorithm solving Factor in polynomial-time, algorithm 3.2 solves EMod in polynomial-time. By proposition 3.1, DMod can be solved in polynomial-time. \Box

References

- [1] G. D. Birkhoff and H.S. Vandiver. On the integral divisors of $a^n b^n$. The Annals of Mathematics, 5(4):173–180, July 1904.
- [2] RSA Security Inc. The new rsa factoring challenge. RSA-160 is factored! (http://www.rsasecurity.com/rsalabs/node.asp?id=2097), 2003.
- [3] L. L. Ng. A problem in *p*-adics, 1989.
- [4] N. J. A. Sloane. Sequences a038081 and a014221. The On-Line Encyclopedia of Integer Sequences (http://www.research.att.com/~njas/sequences/Seis.html).