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1 Introduction

In this paper, we give some constructions of composite numbers N , such that
every number less than or equal to M divides N . Therefore,

lcm(1, 2, 3, · · · ,M) | N.

We call such numbers divisible up to M .

Definition 1.1. An integer N is divisible up to M if n | N for all 0 < n ≤ M .

A trivial construction is N = M !. However, it requires an enumeration of all
prime numbers less than or equal to M . The constructions given in this paper
do not require such enumeration.

In section 2, we present a family of constructions of the composite number
Dr,k, where Dr,k is divisible up to 2k−1 − 1 for any positive integer r. The
factoring problem is discussed in section 3. The problem of computing Dr,k mod
n is closely related to the factoring problem. They are probably equivalent.

2 Numbers of the form rE − E, where E = rr·
··

r

Let r ∈ N = {1, 2, · · ·}. Define recursively exponential numbers, Er,k, to be

Er,−1 = 0, (2.1)
Er,k = rEr,k−1 for k ≥ 0. (2.2)

Let Dr,k be the difference between Er,k and Er,k−1, i.e.

Dr,k = Er,k − Er,k−1 for k ≥ 0. (2.3)

Dr,k can be evaluated by the recursive equation below.

Dr,k = Er,k−1(rDr,k−1 − 1) for k ≥ 0. (2.4)
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Table 2.1 shows some values of Er,k and Dr,k. Er,k and Dr,k grow repidly.
Obviously, Er,k divides Er,k+1 for k ≥ 1. The divisibe relationship also holds
for Dr,k. We have the following proposition.

k E2,k D2,k E3,k D3,k · · · Er,k Dr,k

0 1 1 1 1 · · · 1 1
1 2 1 3 2 · · · r r − 1
2 4 2 27 24 · · · rr rr − r

3 16 12 7625597484987 7625597484960 · · · rrr

rrr − rr

Table 2.1: Examples of Er,k and Dr,k

Proposition 2.1. For r > 1 and 0 ≤ a < b,

Dr,a | Dr,b. (2.5)

Proof. It is enough to show Dr,k | Dr,k+1 for k ≥ 0. Then, the theorem follows.

We show it by induction. Dr,0 = 1 divides Dr,1 = r−1. Assume Dr,k−1 | Dr,k.
For k > 0, let Dr,k = nDr,k−1 for some integer n. By equation 2.4,

Dr,k+1 = Er,k(rDr,k − 1)
= Er,k(rnDr,k−1 − 1)

= Er,k(rDr,k−1 − 1)(r(n−1)Dr,k−1 + r(n−2)Dr,k−1 + · · ·+ 1).

Obviously, Er,k−1 | Er,k. Therefore, Dr,k = Er,k−1(rDr,k−1 − 1) divides Dr,k+1.

The next proposition helps to show Dr,k is divisible up to 2m − 1 for some
m in later sections. The Euler’s totient function is denoted by φ(n), which is
the number of positive numbers less than or equal to n and prime to n. ordn(r)
denotes the order of r in the ring Zn.

Proposition 2.2. Let r > 1 be an integer. Suppose the following hypotheses.

(i) 6 divides Dr,b for some b ≥ 2.

(ii) If, for some k ≥ 2, every k-bit integer divides Dr,b+k−2, then φ(a) divides
Dr,b+k−2 for 2k ≤ a < 2k+1 with gcd(r, a) = 1,

Then, for any n ∈ N, if n < 2m, then n |Dr,b+m−2 .

Proof. Let n =
∏l

i=0 pei
i be a factorization of n, where pi are distinct primes.

Consider the case that all pi divides r.
∑l

i=0 ei < m since n < 2m. Then,
n

∣∣ rm−1 . It is clear that rm−1 |Er,m−1 . With equation (2.4), n |Dr,m . By
proposition 2.1, n |Dr,b+m−2 .
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The other case is proven by induction. For m = 2, 6 divides Dr,b by hy-
pothesis (i). The theorem is true for m = 2. Assume all k-bit numbers divide
Dr,b+k−2 for some k ≥ 2. Since Dr,b+k−2 | Dr,b+k−1 by proposition 2.1, it is
enough to show n |Dr,b+k−1 for 2k ≤ n < 2k+1.

If gcd(r, n) > 1, write n = st, such that gcd(r, t) = 1, t > 1 and each prime
factor of s divides r. s > 1 implies t < 2k. Similarly, t > 1 implies s < 2k.
Then, s |Dr,b+k−2 and t |Dr,b+k−2 by induction assumption. gcd(s, t) = 1 im-
plies st |Dr,b+k−2 . Therefore, n |Dr,b+k−1 by proposition 2.1.

For the case that gcd(r, n) = 1, φ(n) |Dr,b+k−2 by hypothesis (ii). We have
ordn(r) |φ(n) as a consequence of Lagrange’s theorem. Together with the fact
n | (rordn(r))c−1 for any positive integer c, we have n divides Er,b+k−2(rDr,b+k−2−
1) = Dr,b+k−1.

2.1 The case r = 2

In this section, E2,k = 22·
··2

︸ ︷︷ ︸
k

is denoted by Ek and D2,k = Ek−Ek−1 is denoted

by Dk. The sequences {Ek}k and {Dk}k are known as Sloane’s A14221 and
A038081 [4]. Dk also is the number of rooted identity trees of height k and the
number of sets of rank k.

2.1.1 Ackermann function

Ek and Dk can be evaluated by Ackermann function. Ackermann function
A(m, n) is defined by

A(m,n) =





n + 1 if m = 0,

A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

It can be shown that A(4, n) = 22·
··2

︸ ︷︷ ︸
n+3

−3. Therefore, for k ≥ 4,

Ek = A(4, k − 3) + 3 (2.6)
Dk = A(4, k − 3)−A(4, k − 4). (2.7)

2.1.2 Divisibility of Dm

Dm+1 is divisible up to 2m − 1, which is a special case of theorem 2.8. In
other words, all m-bit positive integers divide Dm+1. The table below shows
the factorization of Dm for the first few cases. It is clear that the factorization
of Dm contains all primes up to 2m−1 − 1.
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m Em Dm Factorization of Dm

0 1 1 1
1 2 1 1
2 4 2 2
3 16 12 22 · 3
4 65536 65520 24 · 32 · 5 · 7 · 13

5 265536 265536 − 65536 216 · 33 · 52 · 72 · 11 · 132 · 17 · 19 · 29 · 31
· 37 · 41 · 43 · 53 · 61 · 71 · 73 · 79 · 97 · · ·

Table 2.2: Factorization of Dm

The factorization of D5 almost contains all the primes up to 25 = 32. Only
23 is missing. The reason is that we have

ord23(2) = 11,

ord11(2) = 10,

ord5(2) = 4.

In order to have 23 |Dm , 23
∣∣ 2Dm−1 − 1 by equation 2.4, which implies 11 |Dm−1 .

Similarly, 11
∣∣ 2Dm−2 − 1 by equation 2.4. Then, 10 |Dm−2 . 10 = 2 · 5 im-

plies 2 |Em−3 and 5
∣∣ 2Dm−3 − 1 . Then, 4 |Dm−3 , which implies 4 |Em−4 and

m− 4 ≥ 2. Therefore, m ≥ 6.

2.1.3 Sophie-Germain primes

A positive integer p is a Sophie-Germain prime if both p and 2p + 1 are primes.
Since ord2p+1(2) 6= 2 for Sophie-Germain prime p, ord2p+1(2) = p or ord2p+1(2) =
2p. If p |/Dk , 2p + 1

∣∣/ 2Dk − 1 , which implies 2p + 1 |/Dk+1 . This idea is used
to prove theorem 2.4 below.

Definition 2.3. A sequence of primes, p1, p2, · · · , pn, is called a Sophie-Germain
chain if pk+1 = 2pk + 1 for k = 1, 2, · · · , n− 1.

Theorem 2.4. Let p1, p2, · · · , pn be a Sophie-Germain chain. For m > 2,
p1 |Dm if and only if pn |Dm+n−1 .

Proof. It is enough to show the case n = 2. Then, the theorem follows by in-
duction.
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It is obvious that 4 |Dm for m > 2. If p1 |Dm , Dm = 2p1t for some integer
t. Then,

Dm+1 = Em(2Dm − 1)
= Em(22p1t − 1)
= Em(22p1 − 1)(22p1(t−1) + 22p1(t−2) + · · ·+ 1).

ordp2(2) divides φ(p2) = 2p1. Therefore, 22p1 ≡ 1 (mod p2) and p2 |Dm+1 .

If p2 |Dm+1 , then p2

∣∣ 2Dm − 1 . ordp2(2) divides Dm. For being a Sophie-
Germain chain, p2 ≥ 5. ordp2(2) > 2 since 22 = 4 < 5. ordp2(2) divides
φ(p2) = 2p1. Then, p1 divides ordp2(2). Hence, p1 divides Dm.

Remark: The theorem does not apply to the case m = 2. It is because
D2 = 2, which cannot be written as 2p1t when p1 = 2.

For example, the sequence 5, 11, 23 is a Sophie-Germain chain. 5 |/D3 implies
23 |/D5 by theorem 2.4.

2.2 Divisibility of Dr,m with r odd

In this section, we consider Dr,k for positive odd r. If r = 1, D1,k = 0 for all
k > 0. It is a degenerate case. Table 2.3 and 2.4 show the factorizations of some
D3,k and D5,k. Note that all 2-bit numbers divide both D3,2 and D5,2, all 3-bit
numbers divide both D3,3 and D5,3. For D5,3, even all 4-bit numbers divide it.

k E3,k D3,k Factorization of D3,k

0 1 1 1
1 3 2 2
2 27 24 23 · 3
3 7625597484987 7625597484960 25 · 33 · 5 · 7 · 13 · 41 · 73 · 6481

Table 2.3: Factorization of D3,k

k E5,k D5,k Factorization of D5,k

0 1 1 1
1 5 4 22

2 3125 3120 24 · 3 · 5 · 13
3 53125 53125 − 3125 26 · 32 · 55 · 7 · 11 · 13 · 17 · 31 · 41 · · ·

Table 2.4: Factorization of D5,k
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The results given in this section usually are one step better than the case of
r even. It is because Dr,1 = r − 1 is even, which provides 2 as a factor for the
later values in the sequence. We show a divisibility theorem which tells that
Dr,m is divisible up to 2m − 1. Before presenting the theorem, we show there
are enough factors of 2 in each Dr,m.

Proposition 2.5. For r odd, r > 1 and m > 0, if 2k |Dr,m , then 2k+2 |Dr,m+1 .

Proof. Since Dr,m | Dr,m+1 by proposition 2.1, the statement is equivalent to

4Dr,m divides Dr,m+1 for m > 0.

We prove it by induction.

For the base case, if r ≡ 1 (mod 4), 4 divides r − 1 = Dr,1. Then 4Dr,0 = 4
divides Dr,1. If r ≡ 3 (mod 4), Dr,1 = r − 1 ≡ 2 (mod 4) and

Dr,2 = r(rr−1 − 1)

≡ r(r
r−1
2 − 1)(r

r−1
2 + 1)

≡ 0 (mod 8).

Therefore, 4Dr,1 divides Dr,2.

Assume 4Dr,m−1 divides Dr,m for some m > 1. Write Dr,m = 2kt with t
odd and k ≥ 2. Er,m−1(rDr,m−1 − 1) = Dr,m ≡ 0 (mod 2k). Since Er,m−1 is
odd, rDr,m−1 ≡ s2k + 1 (mod 2k+2), where s = 0, 1, 2 or 3.

r4Dr,m−1 ≡ (s2k + 1)4

≡ s424k + 4s323k + 6s222k + 4s2k + 1
≡ 1 (mod 2k+2).

Then, Dr,m+1 = Er,m(rDr,m − 1) ≡ 0 (mod 2k+2).

Corollary 2.6. For r > 1 and k > 0, if r ≡ 1 (mod 4), 22k
∣∣ Dr,k. For r ≡ 3

(mod 4), 22k−1
∣∣ Dr,k.

Proof. We prove it by induction. 4 | r − 1 if r ≡ 1 (mod 4). 2 | r − 1 if r ≡ 3
(mod 4). The base cases are true. The induction step follows from proposition
2.5.

Theorem 2.7. Let r be a positive odd integer. For any n ∈ N, if n < 2m, then
n |Dr,m .

6



Proof. We prove it by showing it satisfies all the hypotheses in proposition 2.2
for b = 2. Then, the theorem follows.

For hypothesis (i), Dr,2 = r(rr−1 − 1) is divisible by 2 since rr−1 − 1 is di-
visible by 2. If r ≡ 0 (mod 3), 3 |Dr,2 . Otherwise, ord3(r) = 1 or ord3(r) = 2
imply ord3(r) | r − 1, which further implies 3

∣∣ rr−1 − 1 . Therefore, 6 divides
Dr,2.

For hypothesis (ii), if a is even, φ(a) ≤ a
2 < 2k, then φ(a) |Dr,k by the

assumption given in (ii). For odd a, φ(a) = 2uv with 0 < u ≤ k, v odd and
v < 2k. 2u | Dr,k since 2k

∣∣ Dr,k by corollary 2.6. v | Dr,k by the assumption in
(ii). Therefore, φ(a) divides Dr,k.

2.3 Divisibility of Dr,m with r even

In this section, we prove the divisibility theorem when r is even. Table 2.5 and
2.6 show some factorizations of D4,k and D6,k. Note that Dr,1 = r − 1 must
be odd. For r > 2, 2 is not the smallest prime dividing the first Dr,k > 1. We
show Dr,m is divisible up to 2m − 1. Like the proof of theorem 2.7, we prove
the hypotheses of proposition 2.2 for b = 3 can be satisfied.

k E4,k D4,k Factorization of D4,k

0 1 1 1
1 4 3 3
2 256 252 22 · 32 · 7
3 4256 4256 − 256 28 · 33 · 5 · 72 · 13 · 17 · 19 · 29 · 37 · 43 · 73 · · ·

Table 2.5: Factorization of D4,k

k E6,k D6,k Factorization of D6,k

0 1 1 1
1 6 5 5
2 46656 46650 2 · 3 · 52 · 311
3 646656 646656 − 46656 26 · 36 · 53 · 7 · 11 · 31 · 43 · 101 · · ·

Table 2.6: Factorization of D6,k

Theorem 2.8. Let r > 2 be a even integer. For any n ∈ N, if n < 2m, then
n |Dr,m+1 .
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Proof. For hypothesis (i), Dr,3 = rr(rrr−r−1). 2 |Dr,3 since r is even. If r ≡ 0
(mod 3), 3 | rr . Otherwise, r2 ≡ 1 (mod 3). Then, (r2)

r
2 (rr−1−1) ≡ 1 (mod 3)

and 3
∣∣ rrr−r − 1 . Therefore, 3 |Dr,3 .

For hypothesis (ii), a is odd since r is even. φ(a) = 2uv with 0 < u ≤ k,
v odd and v < 2k. 2u | Dr,k+1 since, obviously, 2k

∣∣ Dr,k+1. v | Dr,k+1 by the
assumption in hypothesis (ii). Therefore, φ(n) divides Dr,k+1.

The theorem follows from proposition 2.2 with b = 3.

2.4 Convergence of rrr··
·

(mod p)

In [3], Ng showed by p-adic valuation that, for any prime p and any positive
integer r, lim

k→∞
Er,k (mod p) exists. We use a different technique to prove a more

general result, lim
k→∞

Er,k (mod n) exists for any n > 1, and even evaluate the

limit. We begin with a unified version of the divisibility theorem. Then, we
show that Er,k (mod n) stabilizes for large k. At last, the limit is evaluated.

Theorem 2.9. Let n be a positive integer with n < 2m. Then, n |Dr,m+1 for
any positive integer r.

Proof. For r = 1, it is trivial. For the other cases, it follows by theorem 2.7 and
2.8.

Proposition 2.10. Let n be an integer with 1 < n < 2m and r be a positive
integer. Then, for any k ≥ m,

Er,k ≡ Er,m (mod n). (2.8)

Proof. n divides Dr,m+1 by theorem 2.9. Then, by proposition 2.1, n divides
Dr,j for j > m + 1. Hence, we have Er,k =

∑k
j=m+2 Dr,j + Er,m+1 ≡ Er,m+1

(mod n). The proposition follows.

Theorem 2.11. Let n be an integer with 1 < n < 2m and r be a positive
integer.

lim
k→∞

Er,k ≡ Er,m (mod n) (2.9)

Proof. For h ≥ 0, Er,m+h ≡ Er,m (mod n) by proposition 2.10. Then,

lim
k→∞

Er,k = lim
h→∞

Er,m+h ≡ lim
h→∞

Er,m = Er,m (mod n).

We will discuss how to compute Er,m (mod n) in section 3.1.
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2.5 Partitionings of prime numbers

For k > 0, define subsets of prime numbers

Pr,k = {p : p prime, p |Dr,k and p |/Dr,k−1 } . (2.10)

Then, for r > 0, Pr,1,Pr,2,Pr,3, · · · is a partitioning of all prime numbers. With
Birkhoff and Vandiver’s theorem (proposition 2.12), we can show Pr,k is non-
empty for r > 1 and k > 0, except the trivial case P2,1. Hence, we have a
non-empty partitioning of primes for each r > 2.

Proposition 2.12. Let Vn = an − bn for some integers a, b with a > b > 0 and
gcd(a, b) = 1. If n 6= 2 and Vn 6= 26 − 16, then there exists a prime p, such that
p |Vn and gcd(p, Vd) = 1 for all d |n and d < n.

See [1] for the proof of proposition 2.12.

Theorem 2.13. {P2,k}k>1 and {Pr,k}k>0 for r > 2 are non-empty partitionings
of primes.

Proof. For any r > 1 and any prime p with p < 2m, p does not divide Dr,0 = 1
and p divides Dr,m+1 by theorem 2.9. Therefore, p ∈ Pr,k for some 0 < k ≤
m + 1. Since Dr,a |Dr,b for all a < b by proposition 2.1, p 6∈ Pr,h for h 6= k.
Therefore, {Pr,k}k>0 is a partitioning of primes.

P2,2 = {2} and P2,3 = {3} are non-empty. Let

I =
{
(r, k) ∈ N2 : k > 3 if r = 2 and k > 1, otherwise.

}
.

We show Pr,k is non-empty for (r, k) ∈ I. For any r > 1 and k > 1, Dr,k−1 6= 2.
For k > 3, D2,k−1 6= 6. By propostion 2.12, for (r, k) ∈ I, there exists a prime
q, such that q

∣∣ rDr,k−1 − 1Dr,k−1 and q
∣∣/ rd − 1d for d |Dr,k−1 and d < Dr,k−1.

Dr,k−2 |Dr,k−1 and Dr,k−2 < Dr,k−1 imply q
∣∣/ rDr,k−2 − 1Dr,k−2 . q |/Er,k−2

since q
∣∣ rDr,k−1 − 1 . Therefore, q divides Dr,k = Er,k−1(rDr,k−1 − 1Dr,k−1), but

not Dr,k−1 = Er,k−2(rDr,k−2 − 1Dr,k−2). Pr,k is non-empty.

2.5.1 Height function

It is natural to ask that given r > 1 and a prime p, how to find k, such that
p ∈ Pr,k? i.e. which partition p belongs to?

Definition 2.14. For r > 1, define the height function,

hr : P→ N, p 7→ k, (2.11)

such that p ∈ Pr,k, where P is the set of primes.
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The problem is equivalent to finding the minimum k, such that p divides
Dr,k because p |/ Dr,j for j < hr(p) and p |Dr,j for j ≥ hr(p). Definition 2.14
can be extended to any n > 1 as below.

Definition 2.15. For r > 1, define the height function,

hr : N \ {1} → N, n 7→ k, (2.12)

such that n |Dr,k and n |/Dr,k−1 .

Suppose n < 2m. hr(n) can be computed by a binary search algorithm since
hr(n) ≤ m + 1 by theorem 2.9.

Algorithm 2.16. heightByBinarySearch(r, n)

{
set lower = 0;
set upper = m + 1;
while true
{

if upper − lower = 1, return upper;
set mid = 1

2 (upper + lower);
if n |Dr,mid

upper = mid;
else

lower = mid;
}

}

The number of loops required before returning is O(log log p). However,
p |Dr,j may not be determined efficiently for j ≤ m because Dr,j can be much
larger than p. We present another algorithm, heightByOrd, which does not query
whether p |Dr,j , except for small j. From the example at the end of section
2.1.2, it suggests the following algorithm.

Algorithm 2.17. heightByOrd(r, n)

{
if n |Dr,1 , return 1;
if n |Dr,2 , return 2;
write n = st for s, t ≥ 1, each prime divisor of s divides r and gcd(r, t) = 1;
find a = min {j : s |Er,j };
find d = ordt(r);
return max(a, heightByOrd(r, d) + 1);

}
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The number of recursion steps in heightByOrd is O(hr(n)). Since hr(n) <
log2 n + 2 by theorem 2.9, the number of recursions is O(log n).

The algorithm requires computing ordt(r), where ordt(r) can be computed
efficiently if the factorization of t can be computed efficiently. We will further
discuss the factoring problem in section 3.

3 Factoring

We show that the factoring problem, denoted by Factor, is closely related
to the problem of computing Dr,k mod n, where the operation, mod n, returns
the remainder of Dr,k divided by n, which is a non-negative integer less than n.
These two problems are probably equivalent. Thoughout this section, n is an
m-bit number greater than 1.

3.1 Computing Dr,k mod n

Computing Dr,k mod n in general is difficult since Dr,k can be huge for k ∈
O(log n). The problem of computing Dr,k mod n is denoted by DMod and,
similarly, the problem of computing Er,k mod n is denoted by EMod. We only
consider 1 < r < n < 2m and k ≥ 0. We first show that DMod and EMod are
polynomial-time equivalent. Then, we present an algorithm for EMod.

Proposition 3.1. DMod and EMod are polynomial-time, in log n, equivalent.

Proof. Given an algorithm solving EMod, DMod can be solved by,

Dr,k mod n = ((Er,k mod n)− (Er,k−1 mod n)) mod n.

On the other hand, given an algorithm solving DMod, EMod can be solved
as following. If k < m + 1,

Er,k mod n =




k∑

j=0

(Dr,j mod n)


 mod n. (3.13)

Otherwise, k ≥ m + 1, by proposition 2.10,

Er,k mod n = Er,m mod n,

which can be computed by equation (3.13).

Obviously, both transformations require O(log n) steps.

Algorithm 3.2. EMod(r, k, n)
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{
if k ≥ m + 1, return EMod(r,m, n);

write n = st for s, t ≥ 1, each prime divisor of s divides r and gcd(r, t) = 1;
if t = 1, return Er,k mod s;

set d = ordt(r);
set h = EMod(r, k − 1, d);
return (s−1rh mod t)s;

}

Computing ordt(r) turns out to require factoring t. For Er,k mod s, if k is
small, it can be computed directly, otherwise, Er,k mod s = 0. All other steps
can be computed efficiently.

3.2 A factoring algorithm

We present a deterministic algorithm for factoring n, where n is a composite,
m-bit number.

Algorithm 3.3. factor(n)

{
for r = 2 to b√nc+ 1

for k = 1 to m
{

set h = Dr,k mod n;
set d = gcd(h, n);
if d 6= 1 and d 6= n

return d;
}

}

Proposition 3.4. Let p, q be distinct prime factors of n. If there exists r0 ≤
b√nc+ 1, such that hr0(p) < hr0(q), then factor returns at r ≤ r0.

Proof. Note that Dr,k mod n = 0 for k > m by theorem 2.9. Therefore, hr0(q) ≤
m. Let k0 = hr0(p). Dr0,k0 = pt for some integer t. gcd(q, t) = 1 since q |/Dr0,k0 .
Then, Dr0,k0 mod n = ps for some integer s with gcd(q, s) = 1. Therefore,
gcd(Dr0,k0 , n) is not equal to 1 or n. The algorithm returns at r ≤ r0.

Proposition 3.5. If n is composite, factor(n) returns a non-trivial factor of n.

Proof. Clearly, if factor returns, it returns a non-trivial divisor of n. There exists
a prime p, such that p |n and p < b√nc+ 1. Let r0 = p + 1 and k0 = 1. Then,
Dr0,k0 = p. factor returns at r ≤ r0.
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Suppose n = pq, where p, q are distinct primes with p < q. factor is not an
interesting algorithm if it returns at r = p+1, since a naive factoring algorithm,
which checks each prime for divisor of n in ascending order, has similar prop-
erty. We hope that there is an r in O(log n), such that factor returns. It is the
case if conjecture 3.6 below is ture. As a consequence, Factor and DMod are
polynomial-time equivalent.

For example, in The New RSA Factoring Challenge [2], RSA-160 = PQ,
where

P = 4542789285848139407168619064973883165613714577846979
3250959984709250004157335359,

Q = 4738809060383201619663383230378895197326892292104095
7944741354648812028493909367.

We have h2(P ) = 12 and h2(Q) = 11. Therefore, factor will return Q, although
Q > P , when r = 2 and k = 11 in algorithm 3.3.

Conjecture 3.6. For any distinct primes p, q, there exists an r in O(log p +
log q), such that hr(p) 6= hr(q).

Theorem 3.7. If conjecture 3.6 is true, Factor and DMod are polynomial-
time, in log n, equivalent.

Proof. Given an algorithm solving DMod in polynomial-time, algorithm 3.3
solves Factor in polynomial-time if conjecture 3.6 is true.

On the other hand, given an algorithm solving Factor in polynomial-time,
algorithm 3.2 solves EMod in polynomial-time. By proposition 3.1, DMod can
be solved in polynomial-time.
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