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1 Introduction

In this paper, we give some constructions of composite numbers IV, such that
every number less than or equal to M divides N. Therefore,

lem(1,2,3,--- ,M)| N.

We call such numbers divisible up to M.
Definition 1.1. An integer N is divisible up to M if n| N for all0 <n < M.

A trivial construction is N = M!. However, it requires an enumeration of all
prime numbers less than or equal to M. The constructions given in this paper
do not require such enumeration.

In section 2, we present a family of constructions of the composite number
D, 1, where D, ; is divisible up to 2k=1 _ 1 for any positive integer r. The
factoring problem is discussed in section 3. The problem of computing D, ; mod
n is closely related to the factoring problem. They are probably equivalent.

2 Numbers of the form r” — E, where F ="
Let r € N={1,2,---}. Define recursively exponential numbers, E, y, to be

E._4 = 0, (2.1)
E., = rEre=1 for k > 0.

Let D, ; be the difference between E; ; and E, ;_1, i.e.
an = Er,k - Er,k—l for k Z 0. (23)
D, j, can be evaluated by the recursive equation below.

Dyp = Epp_1(rP 1 —1) fork>0. (2.4)



Table 2.1 shows some values of E,; and D, ;. FE,; and D,; grow repidly.
Obviously, E, j divides E, ;41 for k > 1. The divisibe relationship also holds
for D, ;. We have the following proposition.
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Table 2.1: Examples of E, ; and D, j

Proposition 2.1. Forr >1 and 0 < a < b,
D, 4| Dyp. (2.5)

Proof. It is enough to show D, | D, k41 for k > 0. Then, the theorem follows.

We show it by induction. D, ¢ = 1divides D,; = r—1. Assume D, _1| D, .
For k > 0, let D, = nD, j_; for some integer n. By equation 2.4,
DT,kJrl - Er,k("ﬂDr’k - ]-)
= B (r"Pre-r - 1)
— ET k(TDr,k—l _ 1)(7«(”_1)Dr,k—1 + r(n_2)th—1 4+ 4 1)

Obviously, E,k_1| E, k. Therefore, D,y = E, _1(rPrk-1 — 1) divides Dy 1.
O

The next proposition helps to show D, j is divisible up to 2™ — 1 for some
m in later sections. The Euler’s totient function is denoted by ¢(n), which is
the number of positive numbers less than or equal to n and prime to n. ord,,(r)
denotes the order of 7 in the ring Z,,.

Proposition 2.2. Let r > 1 be an integer. Suppose the following hypotheses.
(i) 6 divides Dy for some b > 2.

(i1) If, for some k > 2, every k-bit integer divides D, p1r—2, then ¢(a) divides
Dy pik—2 for 2F < a < 281 with ged(r,a) = 1,

Then, for any n € N, if n < 2™, then n | Dy ppm—2 -

Proof. Let n = Hi’:o p;’ be a factorization of n, where p; are distinct primes.

Consider the case that all p; divides r. Zé:o e; < m since n < 2™. Then,
n |rm_1. It is clear that r™~! | E,,,—1. With equation (2.4), n | D,,,. By
proposition 2.1, n | Dy pym—2.



The other case is proven by induction. For m = 2, 6 divides D,.; by hy-
pothesis (i). The theorem is true for m = 2. Assume all k-bit numbers divide
D, pyx—2 for some k > 2. Since Dy pix—2| Drprr—1 by proposition 2.1, it is
enough to show n | Dy pqp_1 for 2k < < kL

If ged(r,n) > 1, write n = st, such that ged(r,t) = 1, ¢t > 1 and each prime
factor of s divides r. s > 1 implies t < 2¥. Similarly, t > 1 implies s < 2F.
Then, s | Dy pyk—2 and t | D, p1x—2 by induction assumption. ged(s,t) =1 im-
plies st | Dy pyk—2. Therefore, n | Dy y41—1 by proposition 2.1.

For the case that ged(r,n) =1, ¢(n) | Dy ptx—2 by hypothesis (ii). We have
ord, () | ¢(n) as a consequence of Lagrange’s theorem. Together with the fact
n| (rordn(m)e—1 for any positive integer ¢, we have n divides E,. o (rPro+r-2—
1) =Dy pyrh—1.

2.1 The case r =2

.2

In this section, Fs ; = 92 s denoted by Ej and Ds ;, = Ej, — E_ is denoted

k
by Dj. The sequences {Ej}, and {Dy}, are known as Sloane’s A14221 and
A038081 [4]. Dy also is the number of rooted identity trees of height k and the
number of sets of rank k.

2.1.1 Ackermann function
E, and Dj can be evaluated by Ackermann function. Ackermann function

A(m,n) is defined by

n+1 if m =0,
A(m,n) =< A(m —1,1) ifm>0andn=20
A(m -1, Alm,n—1)) if m>0andn>0.

2

It can be shown that A(4,n) = 22 _3. Therefore, for k > 4,

n+3
E, = A4k-3)+3 (2.6)
Dy = A(4k—3)—A(4,k—4). (2.7)

2.1.2 Divisibility of D,,

D41 is divisible up to 2™ — 1, which is a special case of theorem 2.8. In
other words, all m-bit positive integers divide D,,+1. The table below shows
the factorization of D,, for the first few cases. It is clear that the factorization
of D,, contains all primes up to 2™~ ! — 1.



’ m H E, ‘ D, Factorization of D,,
0 1 1 1
1 2 1 1
2 4 2 2
3 16 12 22.3
4 65536 65520 21.32.5.7.13
PR R 216 . 3% . 52. 7211132 17-19- 29 - 31
52 2P 65536 | g 4. 43.53.61-71-73-79.97 .- -

Table 2.2: Factorization of D,,

The factorization of D5 almost contains all the primes up to 2° = 32. Only
23 is missing. The reason is that we have

Ord23 (2) = 1 ].,
OI‘dll (2) = 10,
ords(2) = 4.

In order to have 23 | D,,, , 23 | 2Pm-1 1 by equation 2.4, which implies 11 | D,,_1 .
Similarly, 11 |2D7"*2 —1 by equation 2.4. Then, 10 |D,,_2. 10 = 2 -5 im-
plies 2 | E,,,—3 and 5 | 2Pm-3s — 1. Then, 4 | D,,_3, which implies 4 | E,,_4 and
m — 4 > 2. Therefore, m > 6.

2.1.3 Sophie-Germain primes

A positive integer p is a Sophie-Germain prime if both p and 2p + 1 are primes.
Since ordap41(2) # 2 for Sophie-Germain prime p, ordap41(2) = p or ordapt1(2) =
2p. fpf Dy, 2p+1 X2D’° — 1, which implies 2p + 1/ Dg41. This idea is used
to prove theorem 2.4 below.

Definition 2.3. A sequence of primes, p1,p2, -+ ,Pn, is called a Sophie-Germain
chain if ppy1 =2pp +1 fork=1,2,--- n—1.

Theorem 2.4. Let p1,p2,--- ,pn be a Sophie-Germain chain. For m > 2,
b1 ‘Dm Zf and Only Z.fpn |Dm+n—1 .

Proof. Tt is enough to show the case n = 2. Then, the theorem follows by in-
duction.



It is obvious that 4 | D,, for m > 2. If py | Dy, Dy, = 2p1t for some integer
t. Then,

B (2P —1)
= B,(2°7t —1)
Ep (2270 —1)(222 (71 4 92m(t=2) o4 7)),

Dm+1

ordy, (2) divides ¢(p2) = 2p;. Therefore, 2271 =1 (mod ps) and py | Dyyi1 -

If po | Diny1, then py | 2P — 1. ord,,(2) divides Dy,. For being a Sophie-
Germain chain, ps > 5. ord,,(2) > 2 since 22 = 4 < 5. ord,,(2) divides
¢(p2) = 2p1. Then, p; divides ordy,(2). Hence, p; divides Dy,. O

Remark: The theorem does not apply to the case m = 2. It is because
Dy = 2, which cannot be written as 2p,t when p; = 2.

For example, the sequence 5, 11, 23 is a Sophie-Germain chain. 5/ D3 implies
23 [ D5 by theorem 2.4.

2.2 Divisibility of D, ,, with r odd

In this section, we consider D, j for positive odd r. If r =1, D; ;, = 0 for all
k > 0. It is a degenerate case. Table 2.3 and 2.4 show the factorizations of some
D3, and Ds 1. Note that all 2-bit numbers divide both D3 > and Ds o, all 3-bit
numbers divide both D3 3 and Ds 3. For Ds 3, even all 4-bit numbers divide it.

’ k H Es 5, ‘ Ds . ‘ Factorization of Ds ‘
0 1 1 1
1 3 2 2
2 27 24 23.3
3 || 7625597484987 | 7625597484960 | 2°-3%-5-7-13-41-73 - 6481

Table 2.3: Factorization of D3 j

’ k H Es i, \ Ds i, \ Factorization of Ds
0 1 1 1
1 5 4 22
2 ]| 3125 3120 27.3.5.13
3 ][ 53125 | 53125 3125 [ 26.32.55.7.11-13-17-31-41---

Table 2.4: Factorization of Ds



The results given in this section usually are one step better than the case of
r even. It is because D, ; = r — 1 is even, which provides 2 as a factor for the
later values in the sequence. We show a divisibility theorem which tells that
D, ,, is divisible up to 2™ — 1. Before presenting the theorem, we show there
are enough factors of 2 in each D, ,.

Proposition 2.5. Forr odd, r > 1 andm > 0, if 2F | D, , then 2k+2 | Dy i1

Proof. Since Dy, | Dymy1 by proposition 2.1, the statement is equivalent to
4D, , divides Dy 41 for m > 0.

We prove it by induction.

For the base case, if r =1 (mod 4), 4 divides r —1 = D, ;. Then 4D, g =4
divides D, ;. If r =3 (mod 4), D, =7 —1=2 (mod 4) and

D,y = r(r"1-1)
= r(rrgl - 1)(7‘T%1 +1)
= 0 (mod 8).

Therefore, 4D, ; divides D, 5.

Assume 4D, ,,,_1 divides D, ,, for some m > 1. Write D, ,, = 2kt with ¢
odd and k > 2. E,p,_1(rPrm-1 —1) = D, ,, = 0 (mod 2%). Since E,.,,_1 is
odd, rPrm-1 = 528 41 (mod 2¥+2), where s = 0,1,2 or 3.

r4Dr,m71 = (SQk + 1)4
= s'2% 1 45323 1 65222F 1 4528 11
= 1 (mod 2""?).
Then, Dr,m-',-l = E’r‘,m(”"DT’m _ 1) =0 (mod 2k+2)- O

Corollary 2.6. Forr > 1 and k > 0, ifr =1 (mod 4), 2%F ‘ D, . Forr =3
(mod 4), 22*=1| Dy .

Proof. We prove it by induction. 4 |[r —1 if r =1 (mod4). 2 |r—1ifr=3
(mod 4). The base cases are true. The induction step follows from proposition
2.5. O

Theorem 2.7. Let r be a positive odd integer. For anyn € N, if n < 2™, then
1 | Dy -



Proof. We prove it by showing it satisfies all the hypotheses in proposition 2.2
for b = 2. Then, the theorem follows.

For hypothesis (i), D,2 = r(r"~ — 1) is divisible by 2 since 7"~! — 1 is di-
visible by 2. If r =0 (mod 3), 3 | D;2. Otherwise, ords(r) = 1 or ords(r) = 2
imply ords(r)| r — 1, which further implies 3 ’7”"_1 — 1. Therefore, 6 divides
Di.s.

For hypothesis (i), if a is even, ¢(a) < % < 2%, then ¢(a) | Dy, by the
assumption given in (ii). For odd a, ¢(a) = 2%v with 0 < u < k, v odd and
v < 2k, 2| D, since 2% | D, j, by corollary 2.6. v| D, j by the assumption in
(ii). Therefore, ¢(a) divides D, . O

2.3 Divisibility of D, ,, with r even

In this section, we prove the divisibility theorem when r is even. Table 2.5 and
2.6 show some factorizations of Dy and Dg . Note that D,.; = r — 1 must
be odd. For r > 2, 2 is not the smallest prime dividing the first D, ;, > 1. We
show D, ,,, is divisible up to 2™ — 1. Like the proof of theorem 2.7, we prove
the hypotheses of proposition 2.2 for b = 3 can be satisfied.

(k| Esx | Dap | Factorization of Dy j ‘
0 1 1 1
1 4 3 3
2 || 256 252 22.32 .7
3| 4255 [ 42°6 —256 | 28.33.5.72.13-17-19-29-37-43-73---

Table 2.5: Factorization of Dy

’ k H Es,k \ D 1, Factorization of Dg
0 1 1 1
1 6 5 5
2 || 46656 46650 2-3-52.311
3 || 670556 | 676656 — 46656 | 2°-3°-5%.7-11-31-43-101---

Table 2.6: Factorization of Deg j

Theorem 2.8. Let r > 2 be a even integer. For any n € N, if n < 2™, then
n | D,,‘)m_;'_]_ .



T‘—T‘

Proof. For hypothesis (i), D, 5 =

-
(mod 3), 3 |r". Otherwise, r> = 1
and 3 ’7’ ~" — 1. Therefore, 3 | D,

"(r 1). 2| D, 3 since ris even. If r =0
(mod 3). Then, (r2)5(" '~ =1 (mod 3)
3

For hypothesis (ii), a is odd since r is even. ¢(a) = 2%v with 0 < u < k,
v odd and v < 2k, 2¢| D, j+1 since, obviously, 2k| D, 1. v| Dy gy1 by the
assumption in hypothesis (ii). Therefore, ¢(n) divides D, 1.

The theorem follows from proposition 2.2 with b = 3. O

2.4 Convergence of " (mod p)
In [3], Ng showed by p-adic valuation that, for any prime p and any positive
integer r, klirn E, ) (mod p) exists. We use a different technique to prove a more
—00
general result, klim E, ; (mod n) exists for any n > 1, and even evaluate the
— 00

limit. We begin with a unified version of the divisibility theorem. Then, we
show that E, ; (mod n) stabilizes for large k. At last, the limit is evaluated.

Theorem 2.9. Let n be a positive integer with n < 2™. Then, n | Dy i1 for
any positive integer r.

Proof. For r =1, it is trivial. For the other cases, it follows by theorem 2.7 and
2.8. O

Proposition 2.10. Let n be an integer with 1 < n < 2™ and r be a positive
integer. Then, for any k > m,

E.r, = E,, (modn). (2.8)
Proof. n divides D, 41 by theorem 2.9. Then, by proposition 2.1, n divides
D, ; for j > m+ 1. Hence, we have E,;, = Z§:m+2 D+ Ermy1 = Ermga
(mod n). The proposition follows. O

Theorem 2.11. Let n be an integer with 1 < n < 2™ and r be a positive
nteger.

lim E., = E,, (modn) (2.9)

k—o0

Proof. For h >0, Ey i1, = By (mod n) by proposition 2.10. Then,

lim E,, = lim E, 4y = lim E,,, = E,.,, (modn).
k—o0 h—o0 h—oo

We will discuss how to compute E, ,,, (mod n) in section 3.1.



2.5 Partitionings of prime numbers

For k£ > 0, define subsets of prime numbers
Prr = {p : pprime,p|D,y andpfD,p_1}. (2.10)

Then, for r > 0, Py 1, Pr2, Pr3,--- is a partitioning of all prime numbers. With
Birkhoff and Vandiver’s theorem (proposition 2.12), we can show P, is non-
empty for » > 1 and k > 0, except the trivial case Py ;. Hence, we have a
non-empty partitioning of primes for each r > 2.

Proposition 2.12. Let V,, = a™ —b" for some integers a,b with a > b > 0 and
ged(a,b) = 1. If n # 2 and V,, # 26 — 15, then there exists a prime p, such that
p |V and ged(p, V) =1 for all d |n and d < n.

See [1] for the proof of proposition 2.12.

Theorem 2.13. {Pq 1}, ., and {Pr 1}, forr > 2 are non-empty partitionings
of primes.

Proof. For any r > 1 and any prime p with p < 2™, p does not divide D,y =1
and p divides D ;41 by theorem 2.9. Therefore, p € P, ), for some 0 < k <
m + 1. Since D, | D,y for all a < b by proposition 2.1, p & P,.;, for h # k.
Therefore, {P; 1}, is a partitioning of primes.

P2 = {2} and P, 3 = {3} are non-empty. Let
I={(r,k) eN* : k>3ifr=2andk > 1, otherwise.} .

We show Py, is non-empty for (r,k) € I. For any r > 1 and k > 1, D, j,_1 # 2.
For k > 3, Dy 1 # 6. By propostion 2.12, for (r, k) € I, there exists a prime
q, such that g [ rPr+=1 —1Prk=1 and ¢ [r — 14 for d | D, p—1 and d < Dy 1.
Drj—2 | Dy—1 and Dy < Dy gy imply g [rPri=2 —1Prr=2 g/ F . o
since ¢ |1"D"v’~"*1 — 1. Therefore, q divides D, = E, 1 (rPrk-1 —1Prs-1) hut
not D, p_1 = Er7k_2(7‘DT’k_2 — 1Pr-2), Pr 1 is non-empty. O

2.5.1 Height function

It is natural to ask that given r > 1 and a prime p, how to find k, such that
p € P17 i.e. which partition p belongs to?

Definition 2.14. For r > 1, define the height function,
hy,:P—N, p—k, (2.11)

such that p € Py, where P is the set of primes.



The problem is equivalent to finding the minimum k, such that p divides
D, i because p | D, ; for j < h.(p) and p | D, ; for j > h,(p). Definition 2.14
can be extended to any n > 1 as below.

Definition 2.15. For r > 1, define the height function,
h. : N\ {1} = N, n—k, (2.12)

such that n | Dy and n [ Dy j_1.

Suppose n < 2™. h,(n) can be computed by a binary search algorithm since
hr(n) < m + 1 by theorem 2.9.

Algorithm 2.16. heightByBinarySearch(r, n)
{

set lower = 0;
set upper = m + 1;
while true
{
if upper — lower = 1, return upper;
set mid = %(upper + lower);
if n | DT,mid
upper = mid;
else
lower = mid,;

The number of loops required before returning is O(loglogp). However,
p | Dy ; may not be determined efficiently for j < m because D, ; can be much
larger than p. We present another algorithm, heightByOrd, which does not query
whether p | D, ;, except for small j. From the example at the end of section
2.1.2, it suggests the following algorithm.

Algorithm 2.17. heightByOrd(r, n)

{
if n | Dy 1, return 1;
if n | Dy, return 2;
write n = st for s,t > 1, each prime divisor of s divides r and ged(r,t) = 1;
find e =min{j : s|E,;};
find d = ord,(r);
return max(a, heightByOrd(r, d) + 1);

10



The number of recursion steps in heightByOrd is O(h,(n)). Since h,.(n) <
log, n + 2 by theorem 2.9, the number of recursions is O(logn).

The algorithm requires computing ord;(r), where ord(r) can be computed
efficiently if the factorization of ¢ can be computed efficiently. We will further
discuss the factoring problem in section 3.

3 Factoring

We show that the factoring problem, denoted by FACTOR, is closely related
to the problem of computing D, ; mod n, where the operation, mod n, returns
the remainder of D, j divided by n, which is a non-negative integer less than n.
These two problems are probably equivalent. Thoughout this section, n is an
m-bit number greater than 1.

3.1 Computing D, ; mod n

Computing D, , mod n in general is difficult since D, ; can be huge for k €
O(logn). The problem of computing D, , mod n is denoted by DMoD and,
similarly, the problem of computing E, ; mod n is denoted by EMoD. We only
consider 1 < r <n < 2™ and k > 0. We first show that DMoD and EMOD are
polynomial-time equivalent. Then, we present an algorithm for EMoD.

Proposition 3.1. DMoD and EMOD are polynomial-time, in logn, equivalent.
Proof. Given an algorithm solving EMoD, DMoD can be solved by,
D, mod n = ((E,, mod n) — (E, 1 mod n)) mod n.

On the other hand, given an algorithm solving DMoD, EMOD can be solved
as following. If k < m + 1,

E,,modn= zk:(DT,j mod n) | mod n. (3.13)
§=0
Otherwise, k > m + 1, by proposition 2.10,
E,modn = E,, modn,
which can be computed by equation (3.13).
Obviously, both transformations require O(logn) steps. O
Algorithm 3.2. EMod(r, k,n)

11



if kK > m+ 1, return EMod(r, m, n);

write n = st for s,t > 1, each prime divisor of s divides r and ged(r,t) = 1;
if t =1, return E, ; mod s;

set d = ord;(r);
set h = EMod(r, k — 1,d);
return (s~1r" mod ¢)s;

Computing ord;(r) turns out to require factoring ¢. For E, , mod s, if k is
small, it can be computed directly, otherwise, E, ; mod s = 0. All other steps
can be computed efficiently.

3.2 A factoring algorithm

We present a deterministic algorithm for factoring n, where n is a composite,
m-bit number.

Algorithm 3.3. factor(n)

forr =2to [v/n] +1
fork=1tom

{

set h = D, ; mod n;

set d = ged(h, n);

ifd#1andd#n
return d;

Proposition 3.4. Let p,q be distinct prime factors of n. If there exists 1o <
|vn] + 1, such that hy,(p) < hr,(q), then factor returns at r < ry.

Proof. Note that D, ;, mod n = 0 for k > m by theorem 2.9. Therefore, h,,(¢q) <
m. Let kg = hry(p). Dyy,k, = pt for some integer t. ged(q,t) = 1since g [ Dy g, -
Then, Dy, r, mod n = ps for some integer s with gcd(q,s) = 1. Therefore,
gcd(Dyy 1y, 1) is not equal to 1 or n. The algorithm returns at r < rq. O

Proposition 3.5. Ifn is composite, factor(n) returns a non-trivial factor of n.

Proof. Clearly, if factor returns, it returns a non-trivial divisor of n. There exists
a prime p, such that p |n and p < |\/n] +1. Let 7o = p+ 1 and ko = 1. Then,
Dy 1, = p. factor returns at r» < rg. O

12



Suppose n = pq, where p, g are distinct primes with p < ¢. factor is not an
interesting algorithm if it returns at » = p+1, since a naive factoring algorithm,
which checks each prime for divisor of n in ascending order, has similar prop-
erty. We hope that there is an r in O(logn), such that factor returns. It is the
case if conjecture 3.6 below is ture. As a consequence, FACTOR and DMOD are
polynomial-time equivalent.

For example, in The New RSA Factoring Challenge [2], RSA-160 = PQ,
where

P = 4542789285848139407168619064973883165613714577846979
3250959984709250004157335359,
@ = 4738809060383201619663383230378895197326892292104095

7944741354648812028493909367.

We have ho(P) = 12 and ho(Q) = 11. Therefore, factor will return @, although
@ > P, when r = 2 and k = 11 in algorithm 3.3.

Conjecture 3.6. For any distinct primes p,q, there exists an v in O(logp +
log q), such that h.(p) # h.(q).

Theorem 3.7. If conjecture 3.6 is true, FACTOR and DMOD are polynomial-
time, in logn, equivalent.

Proof. Given an algorithm solving DMOD in polynomial-time, algorithm 3.3
solves FACTOR in polynomial-time if conjecture 3.6 is true.

On the other hand, given an algorithm solving FACTOR in polynomial-time,
algorithm 3.2 solves EMOD in polynomial-time. By proposition 3.1, DMOD can
be solved in polynomial-time. O
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